- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行线的性质
- + 平行线性质的应用
- 根据平行线的性质探究角的关系
- 根据平行线的性质求角的度数
- 平行线的性质在生活中的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知点A,D,C在直线EF上,点B在直线MN上,EF∥MN,∠BAC=52°,AB⊥BC,BC平分∠DBN.求∠ADB的度数.

问题情境

(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.
佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.
①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;
②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;
拓展延伸
(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.

(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.
佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.
①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;
②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;
拓展延伸
(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.
如图,要修建一条公路,从
村沿北偏东
方向到
村,从
村沿北偏西
方向到
村.从
村到
村的公路平行于从
村到
村的公路,则
,
两村与
,
两村公路之间夹角的度数为( )
















A.![]() | B.![]() | C.![]() | D.![]() |
一辆汽车在公路上行驶两次拐弯后行驶的方向与原来的方向平行则这两次拐弯的角度不可能是( )
A.第一次向左拐![]() ![]() | B.第一次向右拐![]() ![]() |
C.第一次向右拐![]() ![]() | D.第一次向左拐![]() ![]() |