- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 相交线及其所成的角
- 平行线及其判定
- + 平行线的性质
- 平行线的性质
- 平行线性质的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,直线MN分别与直线AC、DG交于点
A. F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点 | B.![]() (1)求证:BE∥CF; (2)若∠C=35°,求∠BED的度数. |
如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=46°,则∠1的大小为( )


A.14° | B.16° | C.90°﹣α | D.α﹣44° |
填空,将理由补充完整.
如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定义)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定义)
∴∠1=∠2 ( )
∴∠1=∠3(等量代换)
∴FG∥BC ( )
如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定义)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定义)
∴∠1=∠2 ( )
∴∠1=∠3(等量代换)
∴FG∥BC ( )
