- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 相交线及其所成的角
- 平行线及其判定
- + 平行线的性质
- 平行线的性质
- 平行线性质的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠ABC与∠ACB的角平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.请猜想线段:DB、DE、EC之间的数量关系,并说明理由.

实验证明,平面镜发射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.

(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若被b镜反射出的光线n与光线m平行,且∠1=50°,则∠2= ,∠3= ;
(2)在(1)中,若∠1=55°,则∠3= ;若∠1=30°,则∠3= ;
(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与发射光线n平行。请说明理由.

(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若被b镜反射出的光线n与光线m平行,且∠1=50°,则∠2= ,∠3= ;
(2)在(1)中,若∠1=55°,则∠3= ;若∠1=30°,则∠3= ;
(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与发射光线n平行。请说明理由.
如图,在
中,
和
的平分线相交于点
,过点
作
交
于
,交
于
,过点
作
于
.

(1)求证:
(2)求证:
(3)若
,
,请用含
,
的代数式表示
的面积,
___________(直接写出结果)














(1)求证:

(2)求证:

(3)若






如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BD

A. ⑴求证:AE是⊙O的切线; ⑵若AE=4cm,CD=6cm,求AD的长. |

已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )


A.60° | B.65° | C.70° | D.75° |