探究:
(1)如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形: (不添加字母).
(2)如图2,已知△ABC,AB=AC,∠BAC=90°,
是过A点的直线,CN⊥
,BM⊥
,垂足为N、M.求证:△ABM≌△CAN.
解决问题:
(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE =90°.
求证:AC⊥CE.
(1)如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形: (不添加字母).
(2)如图2,已知△ABC,AB=AC,∠BAC=90°,



解决问题:
(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE =90°.
求证:AC⊥CE.

如图,已知
中,
,
,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.

(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,
与
是否全等?请说明理由;
(2)若点P、Q两点分别从B、A两点同时出发,
的周长为16cm,设运动时间为t,问:当t为何值时,是等腰三角形?




(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,


(2)若点P、Q两点分别从B、A两点同时出发,

如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.

下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)试说明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

图1 图2 备用图
(1)试说明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

图1 图2 备用图
下列命题是假命题的是( )
A.有两个角为60°的三角形是等边三角形 | B.等角的补角相等 |
C.角平分线上的点到角两边的距离相等 | D.同位角相等 |
先阅读一段文字,再回答下列问题:
已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为
,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴距离公式可简化成|x2-x1|或|y2-y1|.
(1)已知A(3,5),B(-2,-1),试求A,B两点的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点的距离.
(3)已知一个三角形各顶点坐标为A(0,6),B(-3,2),C(3,2),你能断定此三角形的形状吗?说明理由。
已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为

(1)已知A(3,5),B(-2,-1),试求A,B两点的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点的距离.
(3)已知一个三角形各顶点坐标为A(0,6),B(-3,2),C(3,2),你能断定此三角形的形状吗?说明理由。