- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事,8:45才出发.甲沿相同的路线自行驾车前往,比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.
(1)点A的实际意义: ,点B坐标 ;CD= ;
(2)学校与博物馆之间的距离.
(1)点A的实际意义: ,点B坐标 ;CD= ;
(2)学校与博物馆之间的距离.

因为一次函数
与
的图象关于
轴对称,所以我们定义:函数
与互为
“镜子”函数.
(1)请直接写出函数
的“镜子”函数:________.
(2)如图,一对“镜子”函数
与
的图象交于点
,分别与
轴交于
两点,且AO=BO,△ABC的面积为
,求这对“镜子”函数的解析式.





(1)请直接写出函数

(2)如图,一对“镜子”函数







甲、乙两车间同时开始加工一批零件,从开始加工到加工完成这批零件,甲车间工作了8个小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止.设甲、乙两车间各自加工零件的数量为
(个),甲车间加工的时间为
(时),
与
之间的函数图象如图所示.
(1)甲车间每小时加工零件的个数为_________个;这批零件的总个数为__________个;
(2)求乙车间维护设备后,乙车间加工零件的数量
与
之间的函数关系式;
(3)在加工这批零件的过程中,当甲、乙两车间共同加工完成810个零件时,求甲车间加工的时间.




(1)甲车间每小时加工零件的个数为_________个;这批零件的总个数为__________个;
(2)求乙车间维护设备后,乙车间加工零件的数量


(3)在加工这批零件的过程中,当甲、乙两车间共同加工完成810个零件时,求甲车间加工的时间.

某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:
(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?
(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?
| A类桌椅(套) | B类桌椅(套) | 总费用(元) |
甲公司 | 6 | 5 | 1900 |
乙公司 | 3 | 7 | 1660 |
(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?
(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?
为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。
(1)写出w(元)关于x(棵)的函数关系式;
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
(1)写出w(元)关于x(棵)的函数关系式;
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买
株茶花与
株月季的费用相同,购买
株茶花与
株月季共需
元.
(1)求茶花和月季的销售单价;
(2)该景区至少需要茶花月季共
株,要求茶花比月季多
株,但订购两种花的总费用不超过
元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少.





(1)求茶花和月季的销售单价;
(2)该景区至少需要茶花月季共



某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中
、
分别表示去年、今年水费
(元)与用水量
(
)之间的关系.小雨家去年用水量为150
,若今年用水量与去年相同,水费将比去年多_____元.







某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?
(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?
(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?
在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数
进行了探究学习,请根据他们的对话解答问题.
(1)张明:当
时,我能求出直线与
轴的交点坐标为 ;
李丽:当
时,我能求出直线与坐标轴围成的三角形的面积为 ;
(2)王林:根据你们的探究,我发现无论
取何值,直线总是经过一个固定的点,请求出这个定点的坐标.
(3)赵老师:我来考考你们,如果点
的坐标为
,该点到直线
的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.

(1)张明:当


李丽:当

(2)王林:根据你们的探究,我发现无论

(3)赵老师:我来考考你们,如果点


