- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知如图,直线y=﹣
x+4
与x轴相交于点A,与直线y=
x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1:
若存在直接写出Q点坐标。若不存在请说明理由。



(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于
A.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式 |


李明驾车以100千米/小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离y(千米)与时间x(小时)之间的函数关系图象如图所示.

(1)求a的值;
(2)求李明从服务区到乙地y与x之间的函数关系式;
(3)求x=5时李明驾车行驶的路程.

(1)求a的值;
(2)求李明从服务区到乙地y与x之间的函数关系式;
(3)求x=5时李明驾车行驶的路程.
快、慢两车分别从相距
千米路程的甲、乙两地同时出发,匀速行驶.先相向而行,快车到达乙地后,停留
小时,然后按原路原速返回,快车比慢车晚
小时到达甲地,快、慢两车之间相距的距离
(千米)与出发后所用的时间
(小时)的关系如图所示,请问:在快车返回途中,快、慢两车相距路程为
千米时,慢车行驶了__________小时.







为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.

(1)求y与x之间的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元

(1)求y与x之间的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元
某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)

设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由

设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min) 之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③
;④
.以上结论正确的有( )




A.①④ | B.①②③ | C.①③④ | D.①②④ |
某演唱会购买门票的方式有两种
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;(注方式一中总费用=广告费用+门票费用)
方式二:按如图所示的购买门票方式.
设购买门票x张,总费用为y万元.
(1)求按方式一购买时y与x的函数关系式
(2)若甲、乙两个单位分采用方式一,方式二购买本场演唱会门共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;(注方式一中总费用=广告费用+门票费用)
方式二:按如图所示的购买门票方式.
设购买门票x张,总费用为y万元.
(1)求按方式一购买时y与x的函数关系式
(2)若甲、乙两个单位分采用方式一,方式二购买本场演唱会门共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?

在平面直角坐标系中,点A的坐标(-3,2),将点A绕若点O顺时针旋转90°得到点B若正比例函效y=kx的图象经过点B,则k的值为( )
A.6 | B.-6 | C.![]() | D.![]() |
甲、乙两地之间有一条笔直的公路l,张老师从甲地出发沿公路l步行前往乙地,同时小亮从乙地出发沿公路l骑自行车前往甲地.小亮到达甲地停留一段时间,原路原速返回,追上张老师后两人一起步行到乙地.设张老师与甲地的距离为y1(m),小亮与甲地的距离为y2(m),张老师与小亮之间的距离为s(m),张老师行走的时间为x(min).y1、y2与x之间的函数图象如图1所示,s与x之间的函数图象(部分)如图2所示.
(1)求小亮从乙地到甲地过程中y2(m)与x(min)之间的函数关系式;
(2)直接写出点E的坐标和它的实际意义;
(3)在图2中,补全整个过程中s(m)与x(min)之间的函数图象(标注关键点的坐标,所画图象加粗).
(1)求小亮从乙地到甲地过程中y2(m)与x(min)之间的函数关系式;
(2)直接写出点E的坐标和它的实际意义;
(3)在图2中,补全整个过程中s(m)与x(min)之间的函数图象(标注关键点的坐标,所画图象加粗).
