- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(8分)某校校长暑假将带领校、市级“三好学生”去北京旅游.
甲旅行社说:“如果校长买全票,则其余学生可享受半价优惠.”
乙旅行社说:“包括校长在内全部票价6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费 (表达式) .
(2)当学生数量是多少时,两家旅行社的收费一样?
(3)就学生数x讨论,哪家旅行社更优惠.
甲旅行社说:“如果校长买全票,则其余学生可享受半价优惠.”
乙旅行社说:“包括校长在内全部票价6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费 (表达式) .
(2)当学生数量是多少时,两家旅行社的收费一样?
(3)就学生数x讨论,哪家旅行社更优惠.
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图.
(1)填空:A、C两港口间的距离为 km,a= ;
(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?

(1)填空:A、C两港口间的距离为 km,a= ;
(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?

在平面直角坐标系xOy中,一次函数y=-
x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.


(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

“兄弟餐厅”采购员某日到集贸市场采购草鱼,若当天草鱼的采购单价
(元)与采购量
(斤)之间的关系如图,且采购单价不低于4元/斤.
(1)直接写出
关于
的函数关系式,并写出自变量的取值范围;
(2)若这天他采购草鱼的量不多于20斤,那么这天他采购草鱼最多用去多少钱?



(1)直接写出


(2)若这天他采购草鱼的量不多于20斤,那么这天他采购草鱼最多用去多少钱?

如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.

(1)右图反映的自变量、因变量分别是什么?
(2)爷爷每天从公园返回用多长时间?
(3)爷爷散步时最远离家多少米?
(4)爷爷在公园锻炼多长时间?
(5)计算爷爷离家后的2 0分钟内的平均速度.

(1)右图反映的自变量、因变量分别是什么?
(2)爷爷每天从公园返回用多长时间?
(3)爷爷散步时最远离家多少米?
(4)爷爷在公园锻炼多长时间?
(5)计算爷爷离家后的2 0分钟内的平均速度.
直线y=﹣
x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=
时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=


翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。修筑公路的里程y(千米)和所用时间x(天)的关系用下图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=
的图象。
(1)求点A的坐标;
(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。


(1)求点A的坐标;
(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。

蜡烛燃烧时余下的长度y(cm) 和燃烧的时间x(分钟)的关系如图所示。
(1)求燃烧50分钟后蜡烛的长度;
(2)这支蜡烛最多能燃烧多长时间。

(1)求燃烧50分钟后蜡烛的长度;
(2)这支蜡烛最多能燃烧多长时间。

如表,给出A、B两种上网宽带的收费方式:
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

收费方式 | 月使用费/元 | 包月上网时间/小时 | 超时费/(元/分) |
A | 30 | 20 | 0.05 |
B | 60 | 不限时 | |
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?
