- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,直线
与
轴、
轴分别交于点
,
.点
的坐标为(
,0),点
的坐标为(
,0).
(1)求
的值;
(2)若点
(
,
)是第二象限内的直线上的一个动点.当点
运动过程中,试写出
的面积
与
的函数关系式,并写出自变量
的取值范围;
(3)探究:当
运动到什么位置时,
的面积为
,并说明理由.









(1)求

(2)若点








(3)探究:当




如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:

(1)一个长方体的体积是 cm3;
(2)求图2中线段AB对应的函数关系式;
(3)求注水速度v和圆柱形水槽的底面积S.

(1)一个长方体的体积是 cm3;
(2)求图2中线段AB对应的函数关系式;
(3)求注水速度v和圆柱形水槽的底面积S.
如图,直线y=-2x+8交x轴于A,交y轴于B i点p在线段AB上,过点P分别向x轴、y轴引垂线,垂足为C、D,设点P的横坐标为m,矩形PCOD的面积为S.

(1)求S与m的函数关系式; (2)当m取何值时矩形PCOD的面积最大,最大值是多少.

(1)求S与m的函数关系式; (2)当m取何值时矩形PCOD的面积最大,最大值是多少.
某班进行乒乓球比赛,班主任老师为鼓励同学们积极参与,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则该老师购买笔记本的方案共有( )
A.3种 | B.4种 | C.5种 | D.6种 |
重庆一中渝北校区为奖励“我的中国梦”寒假系列实践活动的获奖学生,学校准备在某商店购买A,B两种文具作为奖品,已知一件A种文具的单价比B种文具的单价便宜4元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.
(1)求A种文具的单价;
(2)根据需要,学校准备在该商店购买A,B两种文具共200件,其中A种文具的件数不多于B种文具件数的3倍.为了节约经费,当购买A,B两种文具各多少件时,所用经费最少?最少经费为多少元?
(1)求A种文具的单价;
(2)根据需要,学校准备在该商店购买A,B两种文具共200件,其中A种文具的件数不多于B种文具件数的3倍.为了节约经费,当购买A,B两种文具各多少件时,所用经费最少?最少经费为多少元?
甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)、甲、乙两人的速度各是多少?
(2)、求甲距A地的路程S与行驶时间t的函数关系式。
(3)、直接写出在什么时间段内乙比甲距离A 地更近?(用不等式表示)

(1)、甲、乙两人的速度各是多少?
(2)、求甲距A地的路程S与行驶时间t的函数关系式。
(3)、直接写出在什么时间段内乙比甲距离A 地更近?(用不等式表示)

某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同;
(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?
(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同;
(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?
(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.
如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=-x+b也随之移动.设移动时间为t秒.

(1)当t=1时,求l的解析式;
(2)若l与线段BM有公共点,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在y轴上.如不存在,请说明理由.

(1)当t=1时,求l的解析式;
(2)若l与线段BM有公共点,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在y轴上.如不存在,请说明理由.
2014年3月31日凌晨,重庆东水门长江大桥正式通车,重庆主城再添一座跨江大桥,为重庆的经济发展提供了帮助.王大爷为了感受重庆交通的发展,搭乘公交车从家去参观东水门长江大桥,预计1个小时能到达.行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是王大爷转乘轻轨去观看大桥(轻轨速度大于公交车速度),结果按预计时间到达.下面能反映王大爷距大桥的距离
(千米)与时间
(小时)的函数关系的大致图象是()










A. | B. | C. | D. |