- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单价:元)与购买数量x(x>20)(单位:本)之间的函数关系式_____________________________________.
两种移动电话计费方式表如下:
(1)一个月内某用户在本地通话时间为x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用;
(2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算?
(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.
| 全球通 | 神州行 |
月租费 | 15元/月 | 0 |
本地通话费 | 0.10元/分 | 0.20元/分 |
(1)一个月内某用户在本地通话时间为x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用;
(2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算?
(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.
元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:

(1)由于汽车发生故障,甲家庭在途中停留了 h;
(2)甲家庭到达风景区共花了多少时间;
(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.

(1)由于汽车发生故障,甲家庭在途中停留了 h;
(2)甲家庭到达风景区共花了多少时间;
(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.
(10分) 2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标
准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/
吨,建筑垃圾处理费30元/吨.若该酒店2015年处理的这两种垃圾数量与2014年相比没有变化,就要多
支付垃圾处理费5100元.
(1)、该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)、该酒店计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?
准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/
吨,建筑垃圾处理费30元/吨.若该酒店2015年处理的这两种垃圾数量与2014年相比没有变化,就要多
支付垃圾处理费5100元.
(1)、该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)、该酒店计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?
如图,已知在直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.点P是x轴上的一个动点,设P(x,0)。

(1)求△ABC的面积;
(2)若△ABP是等腰三角形,求点P的坐标;
(3)是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;如果存在,请在备用图中标出点P的位置。

(1)求△ABC的面积;
(2)若△ABP是等腰三角形,求点P的坐标;
(3)是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;如果存在,请在备用图中标出点P的位置。
(本题满分10分)
某乡组织20辆汽车装运A、B、C三个品种的苹果42吨到外地销售。按规定每辆车只装同一品种苹果,且必须装满。每一个品种苹果不少于2车。
(1)设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;
(2)设此次外销活动的利润为 w (百元),求w与x的函数关系式以及最大利润,并写出相应的车辆分配方案。
某乡组织20辆汽车装运A、B、C三个品种的苹果42吨到外地销售。按规定每辆车只装同一品种苹果,且必须装满。每一个品种苹果不少于2车。
苹果品种 | A | B | C |
每辆汽车运载量(吨) | 2.2 | 2.1 | 2 |
每吨苹果获利(百元) | 6 | 8 | 5 |
(1)设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;
(2)设此次外销活动的利润为 w (百元),求w与x的函数关系式以及最大利润,并写出相应的车辆分配方案。