- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- + 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下面“将无限循环小数化为分数”材料,并解决相应问题:
我们知道分数
写为小数形式即为
,反之,无限循环小数
写成分数形式即
.一般地,任何一个无限循环小数都可以写成分数形式吗?如果可以,应怎样写呢?
(发现)先以无限循环小数
为例进行讨论.
设
=x,由
=0.777…可知,10x=7.777…,即10x﹣x=7.解方程,得x=
.于是
=
,
(类比探究)再以无限循环小数
为例,做进一步的讨论.
无限循环小数
=0.737373…,它的循环节有两位,类比上面的讨论可以想到如下做法.
设
=x,由
=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程,得x=
,于是得
=
(解决问题)
(1)请你把无限小数
写成分数形式,即
= ;
(2)请你把无限小数
写成分数形式,即
= ;
(3)根据以上过程比较
与1的大小关系,并说明你的理由.
我们知道分数




(发现)先以无限循环小数

设





(类比探究)再以无限循环小数

无限循环小数

设





(解决问题)
(1)请你把无限小数


(2)请你把无限小数


(3)根据以上过程比较

为提高公民社会责任感,保证每个纳税人公平纳税,调节不同阶层贫富差距,营造“纳税光荣”社会氛围,2019年我国实行新的《个人收入所得税征收办法》,将个人收所得税的起征点提高至5000元(即全月个人收所得不超过5000元的,免征个人收入所得税):个人收入超过5000元的,其超出部分称为“应纳税所得额”,国家对纳税人的“应纳税所得额”实行“七级超额累进个人所得税制度”,该制度的前两级纳税标准如下:
①全月应纳税所得额不超过3000元的,按3%的税率计税;
②全月应纳税所得额超过3000元但不超过12000元的部分,按10%的税率计税.
按照新的《个人收入所得税征收办法》,在2019年某月,如果纳税人甲缴纳个人收入所得税75元,纳税人乙当月收入为9500元,纳税人丙缴纳个人收入所得税110元.
(1)甲当月个人收入所得是多少?
(2)乙当月应缴纳多少个人收入所得税?
(3)丙当月个人收入所得是多少?
①全月应纳税所得额不超过3000元的,按3%的税率计税;
②全月应纳税所得额超过3000元但不超过12000元的部分,按10%的税率计税.
按照新的《个人收入所得税征收办法》,在2019年某月,如果纳税人甲缴纳个人收入所得税75元,纳税人乙当月收入为9500元,纳税人丙缴纳个人收入所得税110元.
(1)甲当月个人收入所得是多少?
(2)乙当月应缴纳多少个人收入所得税?
(3)丙当月个人收入所得是多少?
为迎军运会,武汉市对城区主干道进行绿化,计划把某一段公路的两侧全部栽上银杏树,要求每两棵树的间隔相等,并且路的每一侧的两端都各栽一棵,如果每隔4米栽一棵,则还差102棵;如果每隔5米栽一棵,则多出102棵,设公路长x米,有y棵树,则下列方程中:①2(
+1)﹣102=2(
+1)+102;②
﹣102=
+102;③4(
﹣1)=5(
﹣1);④4(
﹣1)=5(
﹣1),其中正确的是( )








A.①③ | B.②③ | C.①④ | D.① |
王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多,她们采摘用了多少时间?
列方程解应用题:
《弟子规》的初中读本的主页共计
页。张同学第一周看了
小时,第二周看了
小时,正好把全书主页看完,若第二周平均每小时看的页数比第一周平均每小时多看
页.请问张同学第二周平均每小时看多少页?
《弟子规》的初中读本的主页共计




某校七年级组织数学嘉年华活动,共评出三个奖项,年级处购买了一些奖品进行表彰,相关统计结果如下表(不完整)所示:
已知二等奖的获奖人数比一等奖的获奖人数多5人.你能根据所给条件,分别求出三种奖项的获奖人数吗?请根据你所设的未知数,先填表(代数式不必化简),再列方程解答.
| 一等奖 | 二等奖 | 三等奖 | 合计 |
获奖人数(单位:人) | | | | 40 |
奖品单价(单位:元) | 12 | 9 | 6 | |
奖品金额(单位:元) | | | | 300 |
已知二等奖的获奖人数比一等奖的获奖人数多5人.你能根据所给条件,分别求出三种奖项的获奖人数吗?请根据你所设的未知数,先填表(代数式不必化简),再列方程解答.
如图1,O为直线AB上一点,∠AOC=30°,点C在AB的上方.MON为直角三角板,O为直角顶点,
,ON在射线OC上.将三角板MON绕点O以每秒6°的速度沿逆时针方向旋转,与此同时,射线OC绕点O以每秒11°的速度沿逆时针方向旋转,当射线OC与射线OA重合时,所有运动都停止.设运动的时间为t秒,
(1)旋转开始前,∠MOC= °,∠BOM= °;
(2)运动t秒时,OM转动了 °,t为 秒时,OC与OM重合;
(3)t为何值时,∠MOC=35°?请说明理由.

(1)旋转开始前,∠MOC= °,∠BOM= °;
(2)运动t秒时,OM转动了 °,t为 秒时,OC与OM重合;
(3)t为何值时,∠MOC=35°?请说明理由.

小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了
个废电池,则两人一共收集了
个.要将题目补充完整,横线上可填( )


A.少收集3个 | B.少收集6个 | C.多收集3个 | D.多收集6个 |
如图,在数轴上点A表示数a,点C表示数c,且多项式x3+15x2y2﹣20的常数项是a,最高次项的系数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)动点B从数﹣6对应的点开始向右运动,速度为每秒2个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒3个单位长度,每秒4个单位长度,设运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC.求t的值;
②若点A向左运动,点C向石运动,2AB﹣m•BC的值不随时间t的变化而改变,求出m的值.
(1)求a,c的值;
(2)动点B从数﹣6对应的点开始向右运动,速度为每秒2个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒3个单位长度,每秒4个单位长度,设运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC.求t的值;
②若点A向左运动,点C向石运动,2AB﹣m•BC的值不随时间t的变化而改变,求出m的值.
