- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- + 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式.最多几次?
(2)求一年中进入该园林超过多少次时,购买A类年票比较合算.
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式.最多几次?
(2)求一年中进入该园林超过多少次时,购买A类年票比较合算.
为了庆祝伟大祖国成立七十周年,某班级把一批爱国主义图书分给学生阅读,如果每人分
本,则剩余
本;如果每人分
本,还缺
本.该班有多少名学生?




某商场春节促销活动出售
两种商品,活动方案如下两种:
(1)某单位购买
商品
件,
商品20件,选用何种方案划算?
(2)某单位购买
商品件(
为正整数),购买
商品的件数是商品件数的2倍多1件。则两种方案的实际付款各多少?
(3)若两种方案的实际付款一样,求
的值.

方案一 | | ![]() | ![]() |
每件标价 | 90元 | 100元 | |
每件商品返利 | 按标价的![]() | 按标价的![]() | |
例如买一件![]() ![]() | |||
方案二 | 所购商品一律按标价20%的返利 |
(1)某单位购买



(2)某单位购买



(3)若两种方案的实际付款一样,求

某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价
元,乒乓球每盒定价
元,经洽谈后,甲店每买一-副球拍赠一盒乒乓球,乙店全部按定价的
折优惠.该班需买球拍
副,乒乓球若干盒(不小于
盒).
(1)当购买乒乓球多少盒时,在两店购买付款一样?
(2)如果给你
元,让你选择- -家商店去办这件事,你打算去哪家商店购买?为什么?





(1)当购买乒乓球多少盒时,在两店购买付款一样?
(2)如果给你

佳乐家超市元旦期间搞促销活动,活动方案如下表:
小颖在促销活动期间两次购物分别支付了134元和913元.
(1)小颖两次购买的物品如果不打折,应支付多少钱?
(2)在此活动中,他节省了多少钱?
一次性购物 | 优惠方案 |
不超过200元 | 不给予优惠 |
超过200元,而不超过1000元 | 优惠10% |
超过1000元 | 其中1000元按8.5折优惠,超过部分按7折优惠 |
小颖在促销活动期间两次购物分别支付了134元和913元.
(1)小颖两次购买的物品如果不打折,应支付多少钱?
(2)在此活动中,他节省了多少钱?
甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后超过部分按原价85折优惠设顾客预计累计购物
元(
)
(1)请用含
的代数式分别表示顾客在两家超市购物所付的费用;
(2)某顾客分别到两家超市买了相同的货物,并且所付费用也相同你知道这位顾客共花了多少钱吗?请列出方程解答.


(1)请用含

(2)某顾客分别到两家超市买了相同的货物,并且所付费用也相同你知道这位顾客共花了多少钱吗?请列出方程解答.
解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)
(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为 元;
(2)小强在该地区从甲地乘坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?
(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.
| 华夏专车 | 神州专车 |
里程费 | 1.8元/千米 | 2元/千米 |
时长费 | 0.3元/分钟 | 0.6元/分钟 |
远途费 | 0.8元/千米产(超过7千米部分) | 无 |
起步价 | 无 | 10元 |
华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出的部分按每千米加收0.8元. 神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;起步价与行车距离无关. |
(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为 元;
(2)小强在该地区从甲地乘坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?
(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.
某超市对
,
两种商品开展春节促销活动,活动方案有如下两种:
(同一种商品不可同时参与两种活动)
(1)某单位购买
商品5件,
商品4件,共花费960元,求
的值;
(2)在(1)的条件下,若某单位购买
商品
件(
为正整数),购买
商品的件数比
商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.


| 商品 | ![]() | ![]() |
标价(单位:元) | 120 | 150 | |
方案一 | 每件商品出售价格 | 按标价打7折 | 按标价打![]() |
方案二 | 若所购商品超过10件(不同商品可累计)时,每件商品均按标价打8折后出售. |
(同一种商品不可同时参与两种活动)
(1)某单位购买



(2)在(1)的条件下,若某单位购买





某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤
件(
>30).
(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);
若该客户按方案②购买,需付款 元(用含x的代数式表示);
(2)若
=40,通过计算说明按方案①、方案②哪种方案购买较为合算?
(3)若两种优惠方案可同时使用,当
=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.


(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);
若该客户按方案②购买,需付款 元(用含x的代数式表示);
(2)若

(3)若两种优惠方案可同时使用,当

如图是甲、乙两家运输公司规定每位旅客携带行李的费用与所带行李质量之间的关系图.

(1)由图可知,行李质量只要不超过______kg,甲公司就可免费携带,如果超过了规定的质量,则每超过1 kg要付运费_______元;
(2)解释图中点M所表示的实际意义;
(3)若设旅客携带的行李质量为x(kg),所付的行李费是y(元),请分别写出y甲与y乙(元)随x(kg)之间变化的关系式;
(4)若你准备携带45 kg的行李出行,在甲、乙两家公司中你会选择哪一家?应付行李费多少元?

(1)由图可知,行李质量只要不超过______kg,甲公司就可免费携带,如果超过了规定的质量,则每超过1 kg要付运费_______元;
(2)解释图中点M所表示的实际意义;
(3)若设旅客携带的行李质量为x(kg),所付的行李费是y(元),请分别写出y甲与y乙(元)随x(kg)之间变化的关系式;
(4)若你准备携带45 kg的行李出行,在甲、乙两家公司中你会选择哪一家?应付行李费多少元?