- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.
方案一:让每天所有取奶的人到奶站的距离总和最小;
方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.
(1)若按照方案一建站,取奶站应建在什么位置?
(2)若按照方案二建站,取奶站应建在什么位置?
方案一:让每天所有取奶的人到奶站的距离总和最小;
方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.
(1)若按照方案一建站,取奶站应建在什么位置?
(2)若按照方案二建站,取奶站应建在什么位置?
某商场的一种书法笔每只售价25元,书法练习本每本售价5元。为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本。
(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式。
(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?
(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式。
(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?
某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价、售价如下表所示:

(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
已知:甲、乙两车分别从相距300km的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.

(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量
的取值范围;
(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;
(3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.

(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量

(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;
(3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.
某市将实行居民生活用电阶梯电价方案,如下表,图中折线反映了每户居民每月电费
(元)与用电量
(度)间的函数关系.

(1)小王家某月用电
度,需交电费___________元;
(2)求第二档电费
(元)与用电量
(度)之间的函数关系式;
(3)小王家某月用电
度,交纳电费
元,请你求出第三档每度电费比第二档每度电费多多少元?


档次 | 第一档 | 第二档 | 第三档 |
每月用电量![]() | ![]() | ![]() | ![]() |

(1)小王家某月用电

(2)求第二档电费


(3)小王家某月用电


古代名著《算学启蒙》中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行十二日,问良马几日追及之”,如图是两马行走的路程
关于时间
的函数图像.

(1)
的函数解析式为_______.
(2)求
点的坐标.
(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为
里,请问
为何值时,驽马与良马相距
里?



(1)

(2)求

(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为



甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程
(千米)与小聪行驶的时间
(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.



某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的
,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的

某蔬菜公司收到某种绿色蔬菜20吨,准备一部分进行精加工,其余部分进行粗加工,加工后销售获利的情况如下表:
设该公司精加工的蔬菜为
吨,加工后全部销售获得的利润为
元.
(1)求
与
间的函数表达式;
(2)若该公司加工后全部销售获得的利润为28000元,求该公司精加工了多少吨蔬菜?
销售方式 | 粗加工后销售 | 精加工后销售 |
每吨获利(元) | 1000 | 2000 |
设该公司精加工的蔬菜为


(1)求


(2)若该公司加工后全部销售获得的利润为28000元,求该公司精加工了多少吨蔬菜?
某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.
(1)分别写出两厂的收费
元与印制数量
(份)之间的关系式
(2)在同一直角坐标系内画出它们的图象;
(3)根据图像回答下列问题:
①印制800份宣传材料时,选择哪家印刷厂比较合算?
②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?
(1)分别写出两厂的收费


(2)在同一直角坐标系内画出它们的图象;
(3)根据图像回答下列问题:
①印制800份宣传材料时,选择哪家印刷厂比较合算?
②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?