- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知等边三角形ABC的边长为12cm. 甲、乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.
(1)第一次相遇时甲离顶点________ 最近;
(2)第四次相遇时甲与最近顶点的距离是________ 厘米. 
(1)第一次相遇时甲离顶点
(2)第四次相遇时甲与最近顶点的距离是

已知矩形ABCD中,
,
,现有两只蚂蚁P和Q同时分别从A、B出发,沿
方向前进,蚂蚁P每秒走1cm,蚂蚁Q每秒走2cm.问:


(1)蚂蚁出发后△PBQ第一次是等腰三角形需要爬行几秒?
(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?





(1)蚂蚁出发后△PBQ第一次是等腰三角形需要爬行几秒?
(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?
如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒.
(1)若PE⊥BC,求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.
(1)若PE⊥BC,求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.

如图,矩形
中,
,
,点
从点
出发,以每秒一个单位的速度沿
的方向运动;同时点
从点
出发,以每秒2个单位的速度沿
的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为
秒.

(1)当
______时,两点停止运动;
(2)当
为何值时,
是等腰三角形?











(1)当

(2)当


如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:

(1)将下面的表格补充完整:
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.

(1)将下面的表格补充完整:
正多边形边数 | 3 | 4 | 5 | 6 | … | n |
∠α的度数 | 60° | 45° | | | … | |
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
某村为美化村道,计划在村道两旁种植A、B两种树木,需要购买这两种树苗共800棵.A、B两种树苗的相关信息如下表:
设购买A种树苗x棵,绿化村道的总费用为y元,根据上表提供的信息,解答下列问题:
(1)求出y与x之间的函数关系式;
(2)若这批树苗种植后成活了670棵,则绿化村道的总费用需要多少元?
树苗 | 单价(元/棵) | 成活率 | 植树费(元/棵) |
A | 100 | 80% | 20 |
B | 150 | 90% | 20 |
设购买A种树苗x棵,绿化村道的总费用为y元,根据上表提供的信息,解答下列问题:
(1)求出y与x之间的函数关系式;
(2)若这批树苗种植后成活了670棵,则绿化村道的总费用需要多少元?
A、B两地相距600千米,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回,它们各自离A地的距离y(千米)与行驶时间x(时)之间的函数关系图象如图所示.

(1)求甲车行驶过程中y与x之间的函数关系式;
(2)当它们行驶了7小时时,两车相遇,求乙车的速度.

(1)求甲车行驶过程中y与x之间的函数关系式;
(2)当它们行驶了7小时时,两车相遇,求乙车的速度.