小王玩游戏,一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去,当小王撕到第n次时,手中共有s张纸片.

(1)当小王撕了3次时,他手中有几张纸?
(2)用含有n的代数式表示s,并求小王要得到82张纸片需撕多少次?
(3)小王说:“我撕了若干次后,手中的纸片有2019张”,小王说的对不对?若不对,请说出你的理由;若对的,请指出小王需撕多少次?

(1)当小王撕了3次时,他手中有几张纸?
(2)用含有n的代数式表示s,并求小王要得到82张纸片需撕多少次?
(3)小王说:“我撕了若干次后,手中的纸片有2019张”,小王说的对不对?若不对,请说出你的理由;若对的,请指出小王需撕多少次?
如图,设A是由n×n个有理数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的数,且aij取值为1或﹣1.对于数表A给出如下定义:记xi为数表A的第i行各数之积,yj为数表A的第j列各数之积.
令S=(x1+x2+…+xn)+(y1+y2+…+yn),将S称为数表A的“积和”.
(1)当n=4时,对如下数表A,求该数表的“积和”S的值;
(2)是否存在一个3×3的数表A,使得该数表的“积和”S=0?并说明理由;
(3)当n=10时,直接写出数表A的“积和”S的所有可能的取值.
令S=(x1+x2+…+xn)+(y1+y2+…+yn),将S称为数表A的“积和”.
a11 | a12 | | a1n |
a21 | a22 | | a2n |
M | M | | M |
an1 | an2 | | ann |
(1)当n=4时,对如下数表A,求该数表的“积和”S的值;
1 | 1 | ﹣1 | ﹣1 |
1 | ﹣1 | 1 | 1 |
1 | ﹣1 | ﹣1 | 1 |
﹣1 | ﹣1 | 1 | 1 |
(2)是否存在一个3×3的数表A,使得该数表的“积和”S=0?并说明理由;
(3)当n=10时,直接写出数表A的“积和”S的所有可能的取值.
计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32015+1的个位数字是___
对于每个正整数n,设f(n)表示n(n+1)的末位数字.例如:f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),……则f(1)+f(2)+f(3)+…+f(2012)的值为()
A.6 | B.4022 | C.4028 | D.6708 |
小说《达•芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1、1、2、3、5、8…则这列数的第8个数是_______;
你见过拉面师傅拉面条吗?拉面师傅将一根粗面条拉长、两头捏合,再拉长、捏合,重复这样,就拉成许多根面条了,如下面草图所示,请问这样第( )次可以拉出256根面条.


A.9 | B.8 | C.7 | D.6 |