- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
你能很快算出
吗?
为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n+5(n为正整数),即求
的值,试分析
,2,3……这些简单情形,从中探索其规律.
⑴通过计算,探索规律:
可写成
;
可写成
;
可写成
;
可写成
;………………
可写成________________________________
可写成________________________________
⑵根据以上规律,试计算
=
=

为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n+5(n为正整数),即求


⑴通过计算,探索规律:










⑵根据以上规律,试计算


观察下列两个等式:2﹣
=2×
+1,5﹣
=5×
+1,给出定义如下
我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)
(1)通过计算判断数对“﹣2,1”,“4,
”是不是“共生有理数对”;
(2)若(6,a)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m” “共生有理数对”(填“是”或“不是”),并说明理由;
(4)若(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.




我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)
(1)通过计算判断数对“﹣2,1”,“4,

(2)若(6,a)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m” “共生有理数对”(填“是”或“不是”),并说明理由;
(4)若(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.
观察下列各式
﹣1×
=﹣1+
﹣
=﹣
﹣
=﹣
(1)根据以上规律可得:﹣
= ;
= (n≥1的正整数).
(2)用以上规律计算:(﹣1×
)+(﹣
)+(﹣
)+…+(﹣
).
﹣1×


﹣


﹣


(1)根据以上规律可得:﹣


(2)用以上规律计算:(﹣1×




我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.
定义:如果
(a>0,a≠1,N>0),那么b叫做以a为底N的对数,记作
.
例如:因为
,所以
;因为
,所以
.
根据“对数”运算的定义,回答下列问题:
(1)填空:
,
= .
(2)已知m,n为整数,且|m-2|+|m-n|=
,求m+n的值.
(3)对于“对数”运算,小明同学认为有“
(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请说明理由;如果不正确,请举出一个反例加以说明,并写出正确的结论.
定义:如果


例如:因为




根据“对数”运算的定义,回答下列问题:
(1)填空:



(2)已知m,n为整数,且|m-2|+|m-n|=

(3)对于“对数”运算,小明同学认为有“
