- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读材料,解决问题:
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末
位能被
整除的数,本身必能被
整除,反过来,末
位不能被
整除的数,本身也不可能被
整除,例如判断992250能否被25、625整除时,可按下列步骤计算:
,
为整数,
能被25整除
,
不为整数,
不能被625整除
材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.
(1)若
这个三位数能被11整除,则
;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数
(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.
材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论;末












材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.
(1)若


(2)若一个六位数p的最高位数字为5,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.
(1)如图,已知直线AB、CD交于点O,OE平分∠BOD,若∠3:∠2=8:1,求∠AOC的度数.

(2)计算题
①
-
+
-
②4(x﹣2)2-25=0

(2)计算题
①




某计算装置有一数据输入口A和一个运算结果的输出口B,下表是小明输入的一些数据和这些数据经该装置计算后所输出的相应结果,按照这个计算装置的计算规律,若输入的数据是10.则输出的数是_______.
A | 1 | 2 | 3 | 4 | 5 | … |
B | 2 | 5 | 10 | 17 | 26 | … |
如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.
探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为 ,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是 ;
探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为 ;(用含m的式子表示)
运用规律:
(1)已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是 ,这个奇数落在从左往右第 列;
(2)被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:若不能,请说明理由.
探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为 ,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是 ;
探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为 ;(用含m的式子表示)
运用规律:
(1)已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是 ,这个奇数落在从左往右第 列;
(2)被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:若不能,请说明理由.
