- 数与式
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- + 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
数轴上
,
,
所对应的点分别为点
,点
,点
。若点
到点
的距离表示为
,点
到点
的距离表示为
。我们有
,
.

(1)点
,点
,点
在数轴上分别对应的数为
,
,
.且
,直接写出
的值 。
(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从
,
两点出发向右运动,甲的速度为
个单位每秒,乙的速度为
个单位每秒。求经过几秒,点
与两只蚂蚁的距离和等于
.
(3)在(1)(2)的条件下,电子蚂蚁乙运动到点
后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至点
后也以原速返回,到达自己的出发点后又折返向点
运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动。求运动时间为多少时,两只蚂蚁相遇。















(1)点








(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从






(3)在(1)(2)的条件下,电子蚂蚁乙运动到点



记多项式x2+2x+1为f(x),多项式y2-4y+4为f(y),且多项式f(x)的项数为a,f(y)的次数、一次项系数分别是b、m,数a,b,m数轴上分别对应着点A,B,M.
(1)求代数式a2-b2的值;
(2)数轴上有一点G,且到点M,B的距离相等.
①求线段GA的长;
②若n是关于x的方程mx+b=ax的解,且数轴上点N对应着数n,比较线段NG与NB的大小.
(1)求代数式a2-b2的值;
(2)数轴上有一点G,且到点M,B的距离相等.
①求线段GA的长;
②若n是关于x的方程mx+b=ax的解,且数轴上点N对应着数n,比较线段NG与NB的大小.
数轴上A,B,C三个点对应的数分别为a,b,x,且A,B到﹣1所对应的点的距离都等于7,点B在点A的右侧,
(1)请在数轴上表示点A,B位置,a= ,b= ;
(2)请用含x的代数式表示CB= ;
(3)若点C在点B的左侧,且CB=8,点A以每秒2个单位长度的速度沿数轴向右运动,当AC=2AB且点A在B的左侧时,求点A移动的时间.
(1)请在数轴上表示点A,B位置,a= ,b= ;
(2)请用含x的代数式表示CB= ;
(3)若点C在点B的左侧,且CB=8,点A以每秒2个单位长度的速度沿数轴向右运动,当AC=2AB且点A在B的左侧时,求点A移动的时间.
如图,在数轴上点O为原点,A点表示数a,B点表示数b,且a、b满足|a+2|+|b-4|=0;

(1)点A表示的数为 ;点B表示的数为 ;
(2)如果M、N为数轴上两个动点.点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动.
①当运动2秒时,点M、N对应的数分别是 、 .
②当运动t秒时,点M、N对应的数分别是 、 .(用含t的式子表示)
③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)

(1)点A表示的数为 ;点B表示的数为 ;
(2)如果M、N为数轴上两个动点.点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动.
①当运动2秒时,点M、N对应的数分别是 、 .
②当运动t秒时,点M、N对应的数分别是 、 .(用含t的式子表示)
③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)
如图所示,在数轴上点A,B,C表示得数为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.
(1)则AB= ,BC= ,AC= ;
(2)点A,B,C开始在数轴上运动,若点C以每秒3个单位长度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动,请问:t为何值时,AC=BC.请说明理由.
(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.
请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.
(1)则AB= ,BC= ,AC= ;
(2)点A,B,C开始在数轴上运动,若点C以每秒3个单位长度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动,请问:t为何值时,AC=BC.请说明理由.
(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.
请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.

操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),

操作一:(1)折叠纸面,使1表示的点与−1的点重合,则−3的点与_ __表示的点重合;
操作二:(2)折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:
① −5表示的点与数___表示的点重合;
② 若数轴上A、 B两点之间距离为20,其中A在B的左侧,且A、 B两点经折叠后重合,求A、B两点表示的数各是多少
③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

操作一:(1)折叠纸面,使1表示的点与−1的点重合,则−3的点与_ __表示的点重合;
操作二:(2)折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:
① −5表示的点与数___表示的点重合;
② 若数轴上A、 B两点之间距离为20,其中A在B的左侧,且A、 B两点经折叠后重合,求A、B两点表示的数各是多少
③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。
已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边。
(1)点A所对应的数是___,点B对应的数是___;
(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数。
(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒2个单位长度,同时点N从点B出发向右运动,速度为每秒4个单位长度,设线段NO的中点为P(O原点),在运动过程中线段PO−AM的值是否变化?若不变,求其值;若变化,请说明理由。
(1)点A所对应的数是___,点B对应的数是___;
(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数。
(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒2个单位长度,同时点N从点B出发向右运动,速度为每秒4个单位长度,设线段NO的中点为P(O原点),在运动过程中线段PO−AM的值是否变化?若不变,求其值;若变化,请说明理由。
如图,点A,B在数轴上表示的数分别为-4和+16,A,B两点间的距离可记为AB

(1) 点C在数轴上A,B两点之间,且AC=BC,则C点对应的数是_________
(2) 点C在数轴上A,B两点之间,且BC=4AC,则C点对应的数是_________
(3) 点C在数轴上,且AC+BC=30,求点C对应的数?
(4) 若点A在数轴上表示的数是a,B表示的数是b,则AB=_________

(1) 点C在数轴上A,B两点之间,且AC=BC,则C点对应的数是_________
(2) 点C在数轴上A,B两点之间,且BC=4AC,则C点对应的数是_________
(3) 点C在数轴上,且AC+BC=30,求点C对应的数?
(4) 若点A在数轴上表示的数是a,B表示的数是b,则AB=_________
如图,已知A,B分别为数轴上两点,点A表示的数是-30,点B表示的数是50

(1)请写出线段AB中点M表示的数是__________
(2)若动点P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一动点Q恰好从A点出发,以每秒两个单位长度的速度沿数轴也向左运动,设P,Q两点在数轴上的C点相遇,求C点表示的数是多少?
(3)若点P运动到数轴上某一位置,使点P到点A的距离是点P到点B的距离的2倍,求出此时点P表示的数。

(1)请写出线段AB中点M表示的数是__________
(2)若动点P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一动点Q恰好从A点出发,以每秒两个单位长度的速度沿数轴也向左运动,设P,Q两点在数轴上的C点相遇,求C点表示的数是多少?
(3)若点P运动到数轴上某一位置,使点P到点A的距离是点P到点B的距离的2倍,求出此时点P表示的数。
认真阅读下面的材料,完成有关问题:
材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求
的最小值;
即数轴上x与1对应的点之间的距离,
即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.
设A、B、P三点对应的数分别是1、2、x.
当1≤x≤2时,即P点在线段AB上,此时
;
当x>2时,即P点在B点右侧,此时
=PA+PB=AB+2PB>AB;
当x <1时,即P点在A点左侧,此时
=PA+PB=AB+2PA>AB;
综上可知,当1≤x≤2时(P点在线段AB上),
取得最小值为1.



请你用上面的思考方法结合数轴完成以下问题:
(1)满足
的x的取值范围是 。
(2)求
的最小值为 ,最大值为 。
备用图:

材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求



设A、B、P三点对应的数分别是1、2、x.
当1≤x≤2时,即P点在线段AB上,此时

当x>2时,即P点在B点右侧,此时

当x <1时,即P点在A点左侧,此时

综上可知,当1≤x≤2时(P点在线段AB上),




请你用上面的思考方法结合数轴完成以下问题:
(1)满足

(2)求

备用图:

