- 数与式
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- + 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足
.
(1)写出a、b及AB的距离:a=________;b=________;AB=________.
(2)若动点P从点A出发,以每秒3个点位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动,若P、Q同时出发,问点Q运动多少秒追上点P?


(1)写出a、b及AB的距离:a=________;b=________;AB=________.
(2)若动点P从点A出发,以每秒3个点位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动,若P、Q同时出发,问点Q运动多少秒追上点P?


数形结合是重要的数学思想方法之一,数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转变来解决数学问题。数轴是数形结合的最基础图形,是连接数与形的桥梁之一,请解决下面的问题:
(1)如图1,点B表示的数是1,则点A表示的数是 .

(2)如果点M表示数-2,将点M向右移动6个单位长度到达终点N,那么终点N表示的数是4,此时M、N两点间的距离是 .
(3)若∣x-0∣意义表示数x到原点的距离,则∣x-3∣的意义表示数x到3的距离;类似的式子∣x+3∣=4,则x= .
(4)由(3)可知,一般地,如果点A表示数为a,点B表示的数b,则A、B两点间的距离表示为 .
(5)如图2,数轴上的两个点A、B所表示的数分别是a,b,点O为原点。在a+b,a-b,∣a∣-∣b∣这三个运算结果中,是正数的有 个.

(6)利用数轴直接写出∣x-2∣+∣x+5∣的最小值= .
(1)如图1,点B表示的数是1,则点A表示的数是 .

(2)如果点M表示数-2,将点M向右移动6个单位长度到达终点N,那么终点N表示的数是4,此时M、N两点间的距离是 .
(3)若∣x-0∣意义表示数x到原点的距离,则∣x-3∣的意义表示数x到3的距离;类似的式子∣x+3∣=4,则x= .
(4)由(3)可知,一般地,如果点A表示数为a,点B表示的数b,则A、B两点间的距离表示为 .
(5)如图2,数轴上的两个点A、B所表示的数分别是a,b,点O为原点。在a+b,a-b,∣a∣-∣b∣这三个运算结果中,是正数的有 个.

(6)利用数轴直接写出∣x-2∣+∣x+5∣的最小值= .
点
,
在数轴上分别表示有理数
,
,
,
两点之间的距离表示为
,在数轴上
,
两点之间的距离
.已知数轴上
,
两点表示数
,
满足
,点
为数轴上一动点,其对应的数为
.

(1)
,
两点之间的距离是.
(2)
与
之间的距离表示为.
(3)数轴上是否存在点
,使点
到点
,点
的距离之和为
?若存在,请求出
的值;若不存在,说明理由.
(4)现在点
,点
分别以
单位/秒和
单位/秒的速度同时向右运动,当点
与点
之间的距离为
个单位长度时,求点
所对应的数是多少?


















(1)


(2)


(3)数轴上是否存在点






(4)现在点








已知点A.B在数轴上对应的有理数分别是a,b那么A.B之间的距离可以表示为AB=ǀa-bǀ,点P是数轴上一动点,对应数为x,则点P与点A,B的距离分别表示为PA=ǀx-aǀ,PB=ǀx-bǀ,且ǀa+4ǀ+
=0.
(1)直接写出a,b的值;
(2)当
=2时,求x的值;
(3)当点P在数轴上运动时,是否存在这样的x,使
?若存在,请求出的x的值;若不存在,请说明理由。

(1)直接写出a,b的值;
(2)当

(3)当点P在数轴上运动时,是否存在这样的x,使

数轴上OA两点的距离为4,一动点P从A点出发按以下规律跳动:第一次跳动到AO的中点A1处,第二次从A1点跳动到A1O的中点A2处,第三次从A2跳动到A2O的中点A3处按照这样的规律,继续跳动到点A4A5A6……An(n≥3,n是整数)处那么线段A3O的长度为_________,AnA的长度为_________ 。

已知:有理数a、b、c在数轴上的位置如图所示,且|c|>|a|.

(1)若|a+10|=20,b2=400,c的相反数是30,求a、b、c的值;
(2)在(1)的条件下,a、b、c分别是A、B、C点在数轴上所对应的数,
①线段AC的长是________,将数轴折叠使得点A和点C重合,则折痕处在数轴上表示的数是__________
②数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P点到B点的距离为50,即PC+PA−PB=50?若存在,求出P点在数轴上所对应的数;若不存在,请说明理由;
③点C,B分别以4个单位/秒和3个单位/秒的速度同时向右运动,点A以7个单位/秒的速度向右运动,是否存在常数m,使得3CA+2mOB-mOA为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.

(1)若|a+10|=20,b2=400,c的相反数是30,求a、b、c的值;
(2)在(1)的条件下,a、b、c分别是A、B、C点在数轴上所对应的数,
①线段AC的长是________,将数轴折叠使得点A和点C重合,则折痕处在数轴上表示的数是__________
②数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P点到B点的距离为50,即PC+PA−PB=50?若存在,求出P点在数轴上所对应的数;若不存在,请说明理由;
③点C,B分别以4个单位/秒和3个单位/秒的速度同时向右运动,点A以7个单位/秒的速度向右运动,是否存在常数m,使得3CA+2mOB-mOA为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.
如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发向右运动,运动时间为t秒.

(1)若运动2秒时,则点P表示的数为_______,点P、Q之间的距离是______个单位;
(2)求经过多少秒后,点P、Q重合?
(3)试探究:经过多少秒后,点P、Q两点间的距离为6个单位.

(1)若运动2秒时,则点P表示的数为_______,点P、Q之间的距离是______个单位;
(2)求经过多少秒后,点P、Q重合?
(3)试探究:经过多少秒后,点P、Q两点间的距离为6个单位.
如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,

(1)写出数轴上点B表示的数 ;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如
的几何意义是数轴上表示有理数
的点与表示有理数3的点之间的距离.试探索:
①:若
,则
= .②:
的最小值为 .
(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.
①:当=1时,A,P两点之间的距离为 ;②:当= 时,A,P之间的距离为2.
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t= ,P,Q之间的距离为4.

(1)写出数轴上点B表示的数 ;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如


①:若



(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.
①:当=1时,A,P两点之间的距离为 ;②:当= 时,A,P之间的距离为2.
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t= ,P,Q之间的距离为4.
定义:若线段AB上有一点P,当PA=PB时,则称点P为线段AB的中点。
已知数轴上A,B两点对应数分别为a和b,
,P为数轴上一动点,对应数为x.
(1)a=______,b=_______;
(2)若点P为线段AB的中点,则P点对应的数
为______________.若B为线段AP的中点时则P点对应的数
为______________。
(3)若点A、点B同时向左运动,它们的速度都为1个单位长度/秒,与此同时点P从-16处以2个单位长度/秒向右运动。
①设运动的时间为t秒,直接用含t的式子填空
AP=____________;BP=______________。
②经过多长时间后,点A、点B、点P三点中其中一点是另外两点的中点?
已知数轴上A,B两点对应数分别为a和b,

(1)a=______,b=_______;
(2)若点P为线段AB的中点,则P点对应的数


(3)若点A、点B同时向左运动,它们的速度都为1个单位长度/秒,与此同时点P从-16处以2个单位长度/秒向右运动。
①设运动的时间为t秒,直接用含t的式子填空
AP=____________;BP=______________。
②经过多长时间后,点A、点B、点P三点中其中一点是另外两点的中点?

如图,在数轴上点A表示数a,点C表示数c,且
.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.

比如,点A与点B之间的距离记作A


比如,点A与点B之间的距离记作A
A. (1)求AC的值; (2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数; (3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒. ①若点A向右运动,点C向左运动,AB=BC,求t的值. ②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值. |