- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
)
(Ⅰ)写出
的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记
组步数数据的平均数与方差分别为
,
,
组步数数据的平均数与方差分别为
,
,试分别比较
与以
,
与
的大小;(只需写出结论)
(Ⅲ)从上述
两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为
,求
的分布列和数学期望.
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为

组别 | 步数分组 | 频数 |
![]() | ![]() | 2 |
![]() | ![]() | 10 |
![]() | ![]() | ![]() |
![]() | ![]() | 2 |
![]() | ![]() | ![]() |
(Ⅰ)写出

(Ⅱ)记










(Ⅲ)从上述



某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道测试题,若这6道题中,甲能正确解答其中的4道,乙能正确解答每个题目的概率均为
.假设甲、乙两名学生解答每道测试题都相互独立,互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答.
(1)求甲、乙两名学生共答对2道测试题的概率;
(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?

(1)求甲、乙两名学生共答对2道测试题的概率;
(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?