刷题首页
题库
高中数学
题干
某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据
如下表所示:
已知变量
具有线性负相关关系,且
现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲
;乙
;丙
,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?并求出
的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过
,则该检测数据是“理想数据”.现从检测数据中随机抽取
个,求“理想数据”个数
的分布列和数学期望.
上一题
下一题
0.99难度 解答题 更新时间:2016-06-07 11:43:41
答案(点此获取答案解析)
同类题1
画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进行试销售,其单价
(元)与销量
(个)相关数据如下表:
(1)已知销量
与单价
具有线性相关关系,求
关于
的线性相关方程;
(2)若该新造型糖画每个的成本为
元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程
中斜率和截距最小二乘法估计计算公式:
.参考数据:
.
同类题2
某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上,社区最近四年内在“文化丹青”上的投资金额统计数据如表: (为了便于计算,把2015年简记为5,其余以此类推)
年份
(年)
5
6
7
8
投资金额
(万元)
15
17
21
27
(Ⅰ)利用所给数据,求出投资金额
与年份
之间的回归直线方程
;
(Ⅱ) 预测该社区在2019年在“文化丹青”上的投资金额.
附:对于一组数据
, 其回归直线
的斜率和截距的最小二乘估计分别为
.
同类题3
某地
户家庭的年收入
(万元)和年饮食支出
(万元)的统计资料如下表:
(1)求
关于
的线性回归方程;(结果保留到小数点后
为数字)
(2)利用(1)中的回归方程,分析这
户家庭的年饮食支出的变化情况,并预测该地年收入
万元的家庭的年饮食支出.(结果保留到小数点后
位数字)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
同类题4
某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图甲),以及实验室每天每100颗种子中的发芽数情况(如图乙),得到如下资料:
最高温度
最低温度
甲
乙
(1)请画出发芽数
y
与温差
x
的散点图;
(2)若建立发芽数
y
与温差
x
之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数
y
与温差
x
之间的回归方程
(系数精确到0.01);
②若12月7日的昼夜温差为
,通过建立的
y
关于
x
的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:
.
参考公式:
相关系数:
(当
时,具有较强的相关关系).
回归方程
中斜率和截距计算公式:
.
同类题5
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(1)由折线图看出,可用线性回归模型拟合
与
的关系,请建立
关于
的回归方程(系数精确到0.01);
(2)预测2018年我国生活垃圾无害化处理量.
附注:
参考公式:设具有线性相关关系的两个变量
的一组观察值为
,
则回归直线方程
的系数为:
,
.
参考数据:
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
回归直线方程
用回归直线方程对总体进行估计
求回归直线方程