- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有两辆汽车由南向北驶入四叉路口,各车向左转,向右转或向前行驶的概率相等,且各车的驾驶员相互不认识.
(I)规定:“第一辆车向左转,第二辆车向右转”这一基本事件用“(左,右)”表示.又“(直,左)”表示的是基本事件:“第一辆车向前直行,第二车向左转”.请参照上面规定列出两辆汽车过路口的所有基本事件;
(II)求至少有一辆汽车向左转的概率;
(III)设有
辆汽车向左转,求
的分布列和数学期望.
(I)规定:“第一辆车向左转,第二辆车向右转”这一基本事件用“(左,右)”表示.又“(直,左)”表示的是基本事件:“第一辆车向前直行,第二车向左转”.请参照上面规定列出两辆汽车过路口的所有基本事件;
(II)求至少有一辆汽车向左转的概率;
(III)设有


甲乙两个奥运会主办城市之间有7条网线并联,这7条网线能通过的信息量分别为l,1,2,2,2,3,3,现从中任选三条网线,设可通过的信息量为ξ,当可通过的信息量ξ≥6,则可保证信息通畅.
(1)求线路信息通畅的概率;
(2)求线路可通过的信息量ξ的分布列及期望.
某高三学生的10科会考成绩中,有三科“优”,四科“良”,三科“及格”.从这10科成绩中任取3科,求:
(1)取出的三科成绩中“优”的料数
的分布列和数学期望;
(2)取出的三科成绩中“优”多于“良”的概率.
(1)取出的三科成绩中“优”的料数

(2)取出的三科成绩中“优”多于“良”的概率.
某中学经市人民政府批准建分校,工程从2010年底开工到2013年底完工,工程分三期完成.经过初步招投标淘汰后,确定只由甲、乙两家建筑公司承建,且每期工程由两公司之一独立承建,必须在建完前一期工程后再建后一期工程.已知甲公司获得第一期、第二期、第三期工程承包权的概率分别为
.
(1)求甲、乙两公司各至少获得一期工程的概率;
(2)求甲公司获得工程期数
的分布列和数学期望
.

(1)求甲、乙两公司各至少获得一期工程的概率;
(2)求甲公司获得工程期数


某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 | 人教A版 | 人教B版 | ||
性别 | 男教师 | 女教师 | 男教师 | 女教师 |
人数 | 6 | 3 | 4 | 2 |
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为



奖器有
个小球,其中
个小球上标有数字
,
个小球上标有数字
,现摇出
个小球,规定所得奖金(元)为这
个小球上记号之和.
(1)求奖金为9元的概率;
(2)求此次摇奖获得奖金数额的分布列,求此次摇奖获得奖金数额期望.







(1)求奖金为9元的概率;
(2)求此次摇奖获得奖金数额的分布列,求此次摇奖获得奖金数额期望.
某校组织一次篮球投篮测试,已知甲同学每次投篮的命中率均为
。
(1)若规定每投进1球得2分,甲同学投篮4次,求总得分X的概率分布和数学期望。
(2)假设连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次,被停止投篮测试的概率是多少?

(1)若规定每投进1球得2分,甲同学投篮4次,求总得分X的概率分布和数学期望。
(2)假设连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次,被停止投篮测试的概率是多少?
如图,某学校要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用一种颜色的鲜花,相邻区域使用不同颜色的鲜花,现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.

(I)求恰有两个区域用红色鲜花的概率;
(II)记
为花圃中用红色鲜花布置区域个数,求随机变量
的分布列及其数学期望
.

(I)求恰有两个区域用红色鲜花的概率;
(II)记



用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图所示的花圃(不一定用完每一种颜色的鲜花),要求同一区域上用同一种颜色的鲜花,相邻区域用不同颜色的鲜花.

(1)求恰有两个区域用红色鲜花的概率;
(2)记花圃中红色鲜花区域的块数为
求
的分布列和数学期望

(1)求恰有两个区域用红色鲜花的概率;
(2)记花圃中红色鲜花区域的块数为



甲、乙两个奥运会主办城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3.现从中任选三条网线,设可通过的信息量为ξ.若可通过的信息量ξ≥6,
则可保证信息通畅.
(1)求线路信息通畅的概率;
(2)求线路可通过的信息量ξ的分布列和数学期望.
则可保证信息通畅.
(1)求线路信息通畅的概率;
(2)求线路可通过的信息量ξ的分布列和数学期望.