- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一台仪器每启动一次都随机地出现一个5位的二进制数
=(例如:若
,则
),其中二进制数
的各位数中,已知
出现0的概率为
,出现1的概率为
,记
,现在仪器启动一次,则
( )









![]() | ![]() | ![]() | ![]() | ![]() |
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是
,乙每轮猜对的概率是
;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.


(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.
有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数
的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数

(Ⅲ)求该学生被该校录取的概率.
2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午
这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段
记作区间
,
记作
,
记作
,
记作
,例如:10点04分,记作时刻64.

(1)估计这600辆车在
时间段内通过该收费点的时刻的平均值
同一组中的数据用该组区间的中点值代表
;
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在
之间通过的车辆数为
,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布
,其中
可用这600辆车在
之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替
同一组中的数据用该组区间的中点值代表
,已知大年初五全天共有1000辆车通过该收费点,估计在
之间通过的车辆数
结果保留到整数
.
参考数据:若
,则
;
;
.










(1)估计这600辆车在



(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在



(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布









参考数据:若




在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在
内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.

(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为
,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.


(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为

已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.
(1)求“摸球三次得分为5分”的概率;
(2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.
(1)求“摸球三次得分为5分”的概率;
(2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.
随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为
元,求
的分布列与数学期望.
考试情况 | 男学员 | 女学员 |
第1次考科目二人数 | 1200 | 800 |
第1次通过科目二人数 | 960 | 600 |
第1次未通过科目二人数 | 240 | 200 |
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为


某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).


(1)当

(2)设一组电子元件的检测次数为


(3)估算当


在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?
一个小商店从一家有限公司购进21袋白糖,每袋白糖的标准质量是500g,为了了解这些白糖的质量情况,称出各袋白糖的质量(单位:g)如下:
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均质量是多少?标准差s是多少?
(2)质量位于
与
之间有多少袋白糖?所占的百分比是多少?
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均质量是多少?标准差s是多少?
(2)质量位于

