- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个篮球运动员投篮一次得3分的概率为
,得2分的概率为
,不得分的概率为
(
、
、
),已知他投篮一次得分的数学期望为2(不计其它得分情况),则
的最大值为



(




A.![]() | B.![]() | C.![]() | D.![]() |
已知随机变量ξ的分布列,则下列说法正确的是( )


A.存在x,y∈(0,1),E(ξ)>![]() | B.对任意x,y∈(0,1),E(ξ)≤![]() |
C.对任意x,y∈(0,1),D(ξ)≤E(ξ) | D.存在x,y∈(0,1),D(ξ)>![]() |
某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
随机变量X的分布列如下表如示,若数列
是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为 (
.现随机变量 (
.
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.





X | 1 | 2 | … | n |
![]() | ![]() | ![]() | … | ![]() |
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.
一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.
(1)设抛掷5次的得分为
,求
的分布列和数学期望
;
(2)求恰好得到
分的概率.
(1)设抛掷5次的得分为



(2)求恰好得到

随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是
,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从
到
)若掷出偶数遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为
,试证明
是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程
中,
.
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是








附:在线性回归方程


某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标
来衡量产品的质量.当
时,产品为优等品;当
时,产品为一等品;当
时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标
的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.

(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;
(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为
元,求
的分布列与数学期望;
(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是
,方格图上标有第0格、第1格、第2格、……、第50格.机器人开始在第0格,客户每掷一次硬币,机器人向前移动一次,若掷出正面,机器人向前移动一格(从
到
),若掷出反面,机器人向前移动两格(从
到
),直到机器人移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,若机器人停在“胜利大本营”,则可获得优惠券.设机器人移到第
格的概率为
,试证明
是等比数列,并解释此方案能否吸引顾客购买该款产品.






(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;
(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为


(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是








某游戏棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第
站或第
站时,游戏结束.设游戏过程中棋子出现在第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋子所走站数之和
的分布列与数学期望;
(2)证明:
;
(3)若最终棋子落在第
站,则记选手落败,若最终棋子落在第
站,则记选手获胜.请分析这个游戏是否公平.










(1)当游戏开始时,若抛掷均匀硬币


(2)证明:

(3)若最终棋子落在第


棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第
站或第
站时,游戏结束.设棋子位于第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋手所走步数之和
的分布列与数学期望;
(2)证明:
;
(3)求
、
的值.










(1)当游戏开始时,若抛掷均匀硬币


(2)证明:

(3)求


给出下列四个结论:
①从1,2,3,4,5中任取2个不同的数,事件
“取到的2个数之和为偶数”,事件
“取到的
2个数均为偶数”,则
;
②某班共有45名学生,其中30名男同学,15名女同学,老师随机抽查了5名同学的作业,用
表示抽查到的女生的人数,则
;
③设随机变量
服从正态分布
,
,则
;
④由直线
,
,曲线
及
轴所围成的图形的面积是
.
其中所有正确结论的序号为__________.
①从1,2,3,4,5中任取2个不同的数,事件


2个数均为偶数”,则

②某班共有45名学生,其中30名男同学,15名女同学,老师随机抽查了5名同学的作业,用


③设随机变量




④由直线





其中所有正确结论的序号为__________.