- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 利用二项分布求分布列
- + 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
,…,
等10所高校举行自主招生考试,某同学参加每所高校的考试获得通过的概率均为
.
(1)如果该同学10所高校的考试都参加,恰有
所通过的概率为
,当
为何值时,
取得最大值;
(2)若
,该同学参加每所高校考试所需的费用均为
元,该同学决定按
,
,
,…,
顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,否则,继续参加其它高校的考试,求该同学参加考试所需费用
的分布列及数学期望.





(1)如果该同学10所高校的考试都参加,恰有




(2)若







中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为



(Ⅱ)现准备勘探新井





(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值


近年来,空气质量成为人们越来越关注的话题,空气质量指数(
,简称
)是定量描述空气质量状况的指数,空气质量按照
大小分为六级,
为优;
为良;
为轻度污染;
为中度污染;
为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的
的茎叶图如下:

(1)利用该样本估计该地本月空气质量优良(
)的天数;(按这个月总共30天计算)
(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;
(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为
,求
的概率分布列和数学期望.










(1)利用该样本估计该地本月空气质量优良(

(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;
(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为


一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的
个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为
,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当
取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当
时,用
表示要补播种的坑的个数,求
的分布列与数学期望.


(1)当

(2)当



某社区
名居民参加
年国庆活动,他们的年龄在
岁至
岁之间,将年龄按
、
、
、
、
分组,得到的频率分布直方图如图所示.

(1)求
的值,并求该社区参加
年国庆活动的居民的平均年龄(每个分组取中间值作代表);
(2)现从年龄在
、
的人员中按分层抽样的方法抽取
人,再从这
人中随机抽取
人进行座谈,用
表示参与座谈的居民的年龄在
的人数,求
的分布列和数学期望;
(3)若用样本的频率代替概率,用随机抽样的方法从该地
岁至
岁之间的市民中抽取
名进行调查,其中有
名市民的年龄在
的概率为
,当
最大时,求
的值.










(1)求


(2)现从年龄在








(3)若用样本的频率代替概率,用随机抽样的方法从该地








某射手每次射击击中目标的概率是
,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击
次,求有
次连续击中目标,另外
次未击中目标的概率;
(Ⅱ)假设这名射手射击
次,记随机变量
为射手击中目标的次数,求
的分布列及数学期望.

(Ⅰ)假设这名射手射击



(Ⅱ)假设这名射手射击



某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:
,整理得到如下频率分布直方图:

(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在
为“良好”,
为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.


(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在


一个口袋中装有大小相同的
个白球和
个红球,从中有放回地摸球,每次摸出一个,若有
次摸到红球即停止.
(1)求恰好摸
次停止的概率;
(2)记
次之内(含
次)摸到红球的次数为
,求随机变量
的分布列.



(1)求恰好摸

(2)记



