- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- + 独立重复试验
- 独立重复试验的概念
- 独立重复试验的概率问题
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于
A.![]() | B.![]() |
C.![]() | D.![]() |
一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为
,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?

(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为( )
A.0.93×0.1 | B.0.93 | C.![]() | D.1-0.13 |
(本小题满分12分)
甲、乙两人各射击一次,击中目标的概率分别是
和
假设两人射击是否击中目标,相互
之间没有影响;每人各次射击是否击中目标,相互之间也没有影响
(1)甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
⑶设甲连续射击3次,用
表示甲击中目标时射击的次数,求
的数学期望
.(结果可以用分数表示)
甲、乙两人各射击一次,击中目标的概率分别是


之间没有影响;每人各次射击是否击中目标,相互之间也没有影响
(1)甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
⑶设甲连续射击3次,用



在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是()
A.[0.4,1) | B.(0,0.4] | C.(0,0.6] | D.[0.6,1) |
某射击运动员在练习射击中,每次射击命中目标的概率是
,则这名运动员在10次射击中,
至少有9次命中的概率是 .(记
,结果用含
的代数式表示)

至少有9次命中的概率是 .(记


甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为
和
,求(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为
,至少需要多少个乙这样的人?


(2)若达到译出密码的概率为

