- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功,假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( )
A.0.064 | B.0.144 | C.0.216 | D.0.432 |
某高中生每天骑电动自行车上学,从家到学校的途中有4个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是
.
(Ⅰ)求这名学生在上学途中遇到红灯的次数X的分布列;
(Ⅱ)求这名学生在上学途中首次遇到红灯时已通过3个交通岗的概率.

(Ⅰ)求这名学生在上学途中遇到红灯的次数X的分布列;
(Ⅱ)求这名学生在上学途中首次遇到红灯时已通过3个交通岗的概率.
甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为
和
,且甲、乙两人各射击一次得分之和为2的概率为
.假设甲、乙两人射击互不影响,则
值为______.




甲、乙、丙三人将独立参加某项体育达标测试.根据平时训练的经验,甲、乙、丙三人能达标
的概率分别为
、
、
,则三人中有人达标但没有全部达标的概率为_______.
的概率分别为



某工厂加工某种零件需要经过
,
,
三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为
,
,
.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为
.
(1)求
;
(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为
元,求
的分布列及数学期望.







(1)求

(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为


小明和父母都喜爱《中国好声音》这栏节目,
年
月
日晚在鸟巢进行中国好声音终极决赛,四强选手分别为李荣浩战队的邢晗铭,那英战队的斯丹曼簇,王力宏战队的李芷婷,庾澄庆战队的陈其楠,决赛后四位选手相应的名次为
、
、
、
,某网站为提升娱乐性,邀请网友在比赛结束前对选手名次进行预测.现用
、
、
、
表示某网友对实际名次为
、
、
、
的四位选手名次做出的一种等可能的预测排列,
是该网友预测的名次与真实名次的偏离程度的一种描述.
(1)求
的分布列及数学期望;
(2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是
,计算出现这种情况的概率(假定小明家每个人排序相互独立).
















(1)求

(2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是

某大型工厂有
台大型机器,在
个月中,
台机器至多出现
次故障,且每台机器是否出现故障是相互独立的,出现故障时需
名工人进行维修.每台机器出现故障的概率为
.已知
名工人每月只有维修
台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得
万元的利润,否则将亏损
万元.该工厂每月需支付给每名维修工人
万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有
名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有
名维修工人.
(ⅰ)记该厂每月获利为
万元,求
的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
名维修工人?











(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有

(2)已知该厂现有

(ⅰ)记该厂每月获利为


(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘

某学校进行足球选拔赛,有甲、乙、丙、丁四个球队,每两队要进行一场比赛,开始记分规则为:胜一场得3分,平一场得1分,负一场得0分,甲胜乙、丙、丁的概率分别是0.5、0.6、0.8,甲负乙、丙、丁的概率分别是0.3、0.2、0.1,最后得分大于等于7胜出,则甲胜出的概率为________.
某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为
,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求甲、乙两位同学总共正确作答3个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是
,
,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和
的期望.

(1)求甲、乙两位同学总共正确作答3个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是


