- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件
为“第一次取到的是一等品”,事件
为“第二次取到的是一等品”.则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率( )
A.![]() | B.![]() | C.![]() | D.![]() |
某玻璃工厂生产一种玻璃保护膜,为了调查一批产品的质量情况,随机抽取了10件样品检测质量指标(单位:分)如下:38,43,48,49,50,53,57,60,69,70. 经计算得
,
,生产合同中规定:质量指标在62分以上的产品为优质品,一批产品中优质品率不得低于15%.
(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;
(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布
,其中
近似为样本平均数,
近似为样本方差,利用该正态分布,是否有足够的理由判断这批产品中优质品率满足生产合同的要求?
附:若
,则
,


(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;
(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布



附:若



已知袋中装有除颜色外完全相同的5个球,其中红球2个,白球3个,现从中任取1球,记下颜色后放回,连续摸取3次,设
为取得红球的次数,则


A.![]() | B.![]() | C.![]() | D.![]() |
某群体中的每位成员使用移动支付的概率都为
,各成员的支付方式相互独立,设
为该群体的10位成员中使用移动支付的人数,
,
,则





A.0.7 | B.0.6 | C.0.4 | D.0.3 |
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于().
在一个袋子中装有6个除颜色外完全相同的球,设有1个红球,2个黄球,3个黑球,从中依次不放回地抽取2个球,则在第一个球是红球的条件下,第二个球是黄球的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |