- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2016年5月20日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20日~28日9天内记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:

若根据往年防汛经验,每小时降雨量在
时,要保持二级警戒,每小时降雨量在
时,要保持一级警戒.
(1)若以每组的中点代表该组数据值,求这100小时内每小时的平均降雨量;
(2)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.再从这10小时中随机抽取3小时,求抽取的这3小时中属于一级警戒时间的分布列与数学期望.

若根据往年防汛经验,每小时降雨量在


(1)若以每组的中点代表该组数据值,求这100小时内每小时的平均降雨量;
(2)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.再从这10小时中随机抽取3小时,求抽取的这3小时中属于一级警戒时间的分布列与数学期望.
对某校高三年级100名学生的视力情况进行统计(如果两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在
的概率为
.

(1)求a,b的值;
(2)若报考高校A专业的资格为:任何一眼裸眼视力不低于5.0,已知在
中有
的学生裸眼视力不低于5.0.现用分层抽样的方法从
和
中抽取4名同学,设这4人中有资格(仅考虑视力)考A专业的人数为随机变量ξ,求ξ的分布列及数学期望.



(1)求a,b的值;
(2)若报考高校A专业的资格为:任何一眼裸眼视力不低于5.0,已知在




某大学生自主创业,经销某种农产品,在一个销售季度内,每售出
该产品获利润800元,未售出的产品,每
亏损200元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.该大学生为下一个销售季度购进了
该农产品.以
(单位:
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将
表示为
的函数;
(2)根据直方图估计利润
不少于94000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若
,则取
,且
的概率等于需求量落入
的频率),求
的均值.







(1)将


(2)根据直方图估计利润

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若





随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如表:
(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?
(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
先从收入在
及
的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量X表示抽到作为宣讲员的收入在
元的人数,求X的分布列与数学期望.
个人所得税税率表![]() ![]() | 个人所得税税率表![]() ![]() | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率![]() | 级数 | 全月应纳税所得额 | 税率![]() |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?
(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 40 | 30 | 10 | 8 | 7 | 5 |
先从收入在



某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理, 每笼亏损20元.该包子店记录了60天包子的日需求量
(单位:笼,
),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.

(1)设
为一天的包子需求量,求
的数学期望.
(2)若该包子店想保证
以上的天数能够足量供应,则每天至少要做多少笼包子?
(3)为了减少浪费,该包子店一天只做18笼包子,设
为当天的利润(单位:元),求
的分布列和数学期望.



(1)设


(2)若该包子店想保证

(3)为了减少浪费,该包子店一天只做18笼包子,设


从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽取到的可能性相同.在下列三种情况下,分别求出直到取出合格品为止时所需抽取次数
的分布列.
(1)每次取出的产品都不放回此批产品中;
(2)每次取出一件产品后总以一件合格品放回此批产品中.

(1)每次取出的产品都不放回此批产品中;
(2)每次取出一件产品后总以一件合格品放回此批产品中.
为了人民的健康,卫生部对某市的16个水果超市的 “水果防腐安全”进行量化评估,其量化评分(总分10分)如下表所示.
(Ⅰ)现从这16个水果超市中随机抽取3个,求至多有1个评分不低于9分的概率;
(Ⅱ)以这16个水果超市评分数据来估计该市水果超市的水果质量,若从全市的水果超市中任选3个进行量化评估,记
表示抽到评分不低于9分的超市个数,求
的分布列及数学期望.
分数段 | ![]() | ![]() | ![]() | ![]() |
超市个数 | 1 | 3 | 8 | 4 |
(Ⅰ)现从这16个水果超市中随机抽取3个,求至多有1个评分不低于9分的概率;
(Ⅱ)以这16个水果超市评分数据来估计该市水果超市的水果质量,若从全市的水果超市中任选3个进行量化评估,记


袋中有20个大小相同的球,其中记上0号的有10个,记上
号的有
个(
1,2,3,4),现从袋中任取一球,用
表示所取球的标号.
(1)求
的分布列、均值和方差;
(2)若
,
,
,试求
,
的值.




(1)求

(2)若





某校高三(1)班班主任对全班
名学生关于第二次数学模拟考试的情况进行了问卷调查:
调查结果显示,有
名学生认为“比较容易”,
名学生认为“有点难度”,其余学生认为“太难了”.
(1)求本次问卷调查的评分的平均值;
(2)根据评分先从这
名学生中采用分层抽样的方法抽取
名学生,然后再从这
名学生中抽取
名学生,记这
名学生的评分之和为
,求
的分布列与数学期望.

你觉得这次数学试卷难吗? | ||
比较容易(评分:![]() | 有点难度(评分:![]() | 太难了(评分:![]() |
调查结果显示,有


(1)求本次问卷调查的评分的平均值;
(2)根据评分先从这







某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车
年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A组的客户,“⊙”表示B组的客户.
注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.
(Ⅰ)记A,B两组客户的电动汽车的“实际平均续航里程数”的平均值分别为
,
,根据图中数据,试比较
,
的大小(结论不要求证明);
(Ⅱ)从A,B两组客户中随机抽取2位,求其中至少有一位是A组的客户的概率;
(III)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”.从A,B两组客户中,各随机抽取1位,记“驾驶达人”的人数为
,求随机变量
的分布列及其数学期望
.


注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.
(Ⅰ)记A,B两组客户的电动汽车的“实际平均续航里程数”的平均值分别为




(Ⅱ)从A,B两组客户中随机抽取2位,求其中至少有一位是A组的客户的概率;
(III)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”.从A,B两组客户中,各随机抽取1位,记“驾驶达人”的人数为


