- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在某大学自主招生的面试中,考生要从规定的6道科学题,4道人文题共10道题中,随机抽取3道作答,每道题答对得10分,答错或不答扣5分,已知甲、乙两名考生参加面试,甲只能答对其中的6道科学题,乙答对每道题的概率都是
,每个人答题正确与否互不影响.
(1)求考生甲得分
的分布列和数学期望
;
(2)求甲,乙两人中至少有一人得分不少于15分的概率.

(1)求考生甲得分


(2)求甲,乙两人中至少有一人得分不少于15分的概率.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在
岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:


(1)由以上统计数据填
列联表,并判断是否95%的把握认为以
岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

(2)若以
岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取
人参加某项活动,现从这
人中随机抽
人.
①抽到
人是
岁以下时,求抽到的另一人是
岁以上的概率;
②记抽到
岁以上的人数为
,求随机变量
的分布列及数学期望.




(1)由以上统计数据填



(2)若以




①抽到



②记抽到



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |

为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了
辆纯电动乘用车,根据其续驶里程
(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求
的值;
(2)若从这
辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为
(单位:万元),求
的分布列和数学期望
.

某校研究性学习小组,从汽车市场上随机选取了



(1)求

(2)若从这

(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为



集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为
,
,
,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。
(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.



(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
为庆祝“2017年中国长春国际马拉松赛”,某单位在庆祝晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“长春马拉松”和“美丽长春”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“长春马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“美丽长春”标志的概率为

(Ⅰ)求盒中印有“长春马拉松”标志的小球个数;
(Ⅱ)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.
2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
(Ⅰ)若从分数在
,
的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为
,求随机变量
的分布列和数学期望.
分数段 | 频数 | 选择题得分24分以上(含24分) |
![]() | 5 | 2 |
![]() | 10 | 4 |
![]() | 15 | 12 |
![]() | 10 | 6 |
![]() | 5 | 4 |
![]() | 5 | 5 |
(Ⅰ)若从分数在


(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为


某早餐店每天制作甲、乙两种口味的糕点共n(nÎN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?
甲口味糕点日销量 | 48 | 49 | 50 | 51 |
天数 | 20 | 40 | 20 | 20 |
乙口味糕点日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 30 | 20 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?
某研究所设计了一款智能机器人,为了检验设计方案中机器人动作完成情况,现委托某工厂生产
个机器人模型,并对生产的机器人进行编号:
,采用系统抽样的方法抽取一个容量为
的机器人样本,试验小组对
个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数据如图所示,请据此回答如下问题:

(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为
,这
个机器人分别放在
三个房间,从
到
在
房间,从
到
在
房间,从
到
在
房间,求
房间被抽中的人数是多少?
(3)从动作个数不低于
的机器人中随机选取
个机器人,该
个机器人中动作个数不低于
的机器人记为
,求
的分布列与数学期望.




分组 | 机器人数 | 频率 |
![]() | | 0.08 |
![]() | 10 | |
![]() | 10 | |
![]() | | |
![]() | 6 | |

(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为













(3)从动作个数不低于






随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查
人,并将调查情况进行整理后制成下表:
(1)世界联合国卫生组织规定:
岁为青年,
为中年,根据以上统计数据填写以下
列联表:
(2)判断能否在犯错误的概率不超过
的前提下,认为赞成“车柄限行”与年龄有关?
附:
,其中
独立检验临界值表:
(3)若从年龄
的被调查中各随机选取
人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为
,求随机变量
的分布列和数学期望
.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)世界联合国卫生组织规定:



| 青年人 | 中年人 | 合计 |
不赞成 | | | |
赞成 | | | |
合计 | | | |
(2)判断能否在犯错误的概率不超过

附:


独立检验临界值表:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(3)若从年龄





某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用
表示其中男生的人数.
(Ⅰ)请列出
的分布列并求数学期望;
(Ⅱ)根据所列的分布列求选出的4人中至少有3名男生的概率.

(Ⅰ)请列出

(Ⅱ)根据所列的分布列求选出的4人中至少有3名男生的概率.