刷题首页
题库
高中数学
题干
某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理, 每笼亏损20元.该包子店记录了60天包子的日需求量
(单位:笼,
),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.
(1)设
为一天的包子需求量,求
的数学期望.
(2)若该包子店想保证
以上的天数能够足量供应,则每天至少要做多少笼包子?
(3)为了减少浪费,该包子店一天只做18笼包子,设
为当天的利润(单位:元),求
的分布列和数学期望.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 11:38:58
答案(点此获取答案解析)
同类题1
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止;
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
同类题2
某班的健康调查小组从所在学校共选取15名男同学,其年龄、身高和体重数据如下表所示(本题中身高单位:
,体重单位:
).
年龄
(身高,体重)
年龄
(身高,体重)
15
,
,
18
,
,
16
,
,
19
,
,
17
,
,
(1)如果某同学“身高-体重
”,则认为该同学超重,从上述15名同学中任选两名同学,其中超重的同学人数为
,求
的分布列和数学期望;
(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.
1
2
3
4
5
年龄
15
16
17
18
19
平均体重
59
63.3
64
70
69.7
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:
,
,
,
,
,
,并将每组的平均身高依次折算为155,160,165,170,175,180,各组的体重按平均体重计算,数据整理如下表.
1
2
3
4
5
6
平均身高
155
160
165
170
175
180
平均体重
48
57
63
68
74
82
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高
的男同学的平均体重,你认为哪个更合理?请给出理由;
(ii)请根据方案②建立平均体重
与平均身高
的线性回归方程
(数据精确到0.01).
附:
,
.
,
,
,
.
同类题3
口袋中有6个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,3个小球标有数字“1”,每次从中任取一个小球,取后放回,连续抽取两次.
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为
,求
的分布列和期望.
同类题4
在某社区举办的“
亚运知识有奖问答比赛”中,甲、乙、丙三人同时回答一道有关亚运知识的问题,已知甲回答这道题对的概率为
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
;
(1)求乙、丙两人各自回答这道题对的概率;
(2)用
表示回答该题对的人数,求
的分布列和
同类题5
甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下:甲公司规定底薪
元,每销售一件产品提成
元;乙公司规定底薪
元,日销售量不超过
件没有提成,超过
件的部分每件提成
元.
(I)请将两家公司各一名推销员的日工资
(单位:元)分别表示为日销售件数
的函数关系式;
(II)从两家公司各随机选取一名推销员,对他们过去
天的销售情况进行统计,得到如下条形图.若记甲公司该推销员的日工资为
,乙公司该推销员的日工资为
(单位:元),将该频率视为概率,请回答下面问题:
某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
求离散型随机变量的均值