- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
口袋中有6个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,3个小球标有数字“1”,每次从中任取一个小球,取后放回,连续抽取两次.
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为


下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.

(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
某人向一目标射击,在







![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
⑴求


⑵求此人3次都选择在

某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
甲,乙,丙三名射击运动员进行设计比赛,已知他们击中目标的概率分别为0.7,0.8,0.5,现他们三人分别向目标个射击依次,记目标被击中的次数为X.
(1)求随机变量X的概率分布;
(2)求随机变量X的数学期望.
(1)求随机变量X的概率分布;
(2)求随机变量X的数学期望.
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的概率分布以及随机变量X数学期望;(本题结果用分数表示即可)
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为
为坐标原点,
,记
.
(1)求随机变量
的最大值,并求事件“
取最大值”的概率;
(2)求
的分布列及数学期望.



(1)求随机变量


(2)求
