- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有
两个等级.对每种产品,两道工序的加工结果都为
级时,产品为一等品,其余均为二等品.
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率
;

(2)已知一件产品的利润如表二所示,用
分别表示一件甲、乙产品的利润,在(1)的条件下,求
的分布列及
;

(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人
名,可用资金
万元.设
分别表示生产甲、乙产品的数量,在(2)的条件下,
为何值时,
最大?最大值是多少?(解答时须给出图示说明)


(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率


(2)已知一件产品的利润如表二所示,用




(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人






某人上楼梯,每步上一阶的概率为
,每步上二阶的概率为
,设该人从台阶下的平台开始出发,到达第n阶的概率为
.
(Ⅰ)求
;(Ⅱ)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.



(Ⅰ)求

袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)计分介于20分到40分之间的概率.

(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量

(Ⅲ)计分介于20分到40分之间的概率.
在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球.现在前后一共掷了4次骰子,设
、
分别表示甲、乙盒子中球的个数.
(Ⅰ)求
的概率;
(Ⅱ)若
求随机变量
的分布列和数学期望.


(Ⅰ)求

(Ⅱ)若


某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立.令


(1)写出

(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是


从4名男生和2名女生中任选3人参加演讲比赛,设随机变量
表示所选3人中女生的人数.
(1)求
的分布列;
(2)求
的数学期望;
(3)求“所选3人中女生人数
”的概率.

(1)求

(2)求

(3)求“所选3人中女生人数

某次有奖竞猜活动设有
、
两组相互独立的问题,答对问题
可赢得奖金3000元,答对问题
可赢得奖金6000元.规定答题顺序可任选,但只有一个问题答对后才能解答下一个问题,否则中止答题,假设你答对问题
、
的概率依次为
.
(Ⅰ)若你按先
后
的次序答题,写出你获得奖金的数额
的分布列及期望
;
(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.







(Ⅰ)若你按先




(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.
16.在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数
的期望和方差.

袋中有同样的球
个,其中
个红色,
个黄色,现从中随机且不返回地摸球,每次摸
个,当两种颜色的球都被摸到时,即停止摸球,记随机变量
为此时已摸球的次数,求:.
(1)随机变量
的概率分布列;
(2)随机变量
的数学期望与方差.





(1)随机变量

(2)随机变量
