刷题首页
题库
高中数学
题干
某次有奖竞猜活动设有
、
两组相互独立的问题,答对问题
可赢得奖金3000元,答对问题
可赢得奖金6000元.规定答题顺序可任选,但只有一个问题答对后才能解答下一个问题,否则中止答题,假设你答对问题
、
的概率依次为
.
(Ⅰ)若你按先
后
的次序答题,写出你获得奖金的数额
的分布列及期望
;
(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2010-06-05 09:28:20
答案(点此获取答案解析)
同类题1
为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车
与电动自行车
两种车型,采用分段计费的方式租用.
型车每
分钟收费
元(不足
分钟的部分按
分钟计算),
型车每
分钟收费
元(不足
分钟的部分按
分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过
分钟还车的概率分别为
,并且四个人每人租车都不会超过
分钟,甲乙丙均租用
型车,丁租用
型车.
(1)求甲乙丙丁四人所付的费用之和为25元的概率;
(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;
(3)设甲乙丙丁四人所付费用之和为随机变量
,求
的概率分布和数学期望.
同类题2
某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).
同类题3
口袋中装着标有数字1,2,3,4的小球各2个,从口袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性相等,用
表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)计分介于17分到35分之间的概率.
同类题4
某人向一目标射击,在
处射击一次击中目标的概率为
,击中目标得2分;在
处射击一次击中目标的概率为
,击中目标得1分.若他射击三次,第一次在
处射击,后两次都在
处射击,用
表示他3次射击后得的总分,其分布列为:
⑴求
及的数学期望
;
⑵求此人3次都选择在
处向目标射击且得分高于2分的概率.
同类题5
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(2)
表示依方案乙所需化验次数,求
的期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
求离散型随机变量的均值