- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
三人参加篮球投篮比赛,规定每人只能投一次.假设甲投进的概率是
,乙、丙两人同时投进的概率是
,甲、丙两人同时投不进的概率是
,且三人各自能否投进相互独立.
(1)求乙、丙两人各自投进的概率;
(2)设
表示三人中最终投进的人数,求
的分布列和期望.



(1)求乙、丙两人各自投进的概率;
(2)设


唐代饼茶的制作一直延续至今,它的制作由“炙”、“碾”、“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是
,
,
;能通过“碾”这道工序的概率分别是
,
,
;由于他们平时学徒刻苦,都能通过“罗”这道工序;
若这三道工序之间通过与否没有影响,
(Ⅰ) 求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率,
(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数
的分布列.






若这三道工序之间通过与否没有影响,
(Ⅰ) 求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率,
(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数

某种规格的矩形瓷砖
根据长期检测结果,各厂生产的每片瓷砖质量
都服从正态分布
,并把质量在
之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为
、
,则“尺寸误差”
为
,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是
,
、
,
、
,
(正品瓷砖中没有“尺寸误差”大于
的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.

(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为
(元
,求
的分布列及数学期望
.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量
服从正态分布
,则
;
,
,
.




(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为











尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.

(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为




(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量






甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发50个红包,每个红包金额为
元,
.已知在每轮游戏中所产生的50个红包金额的频率分布直方图如图所示.

(1)求
的值,并根据频率分布直方图,估计红包金额的众数;
(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在
的红包个数为
,求
的分布列和期望.



(1)求

(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在



私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了
人,将调查情况进行整理后制成下表:
(
)完成被调查人员的频率分布直方图.
(
)若从年龄在
,
的被调查者中各随机选取
人进行追踪调查,求恰有
人不赞成的概率.
(
)在
在条件下,再记选中的
人中不赞成“车辆限行”的人数为
,求随机变量
的分布列和数学期望.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(

(





(





已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到
次结束为止.某考生一次发球成功的概率为
,发球次数为
,若
的数学期望
,则
的取值范围为( )






A.![]() | B.![]() | C.![]() | D.![]() |
有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数
的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数

(Ⅲ)求该学生被该校录取的概率.
一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得
分).设每次击鼓出现音乐的概率为
,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为
,求
的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.


(1)设每盘游戏获得的分数为


(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.