- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- + 离散型随机变量
- 离散型随机变量与连续型随机变量的区分
- 离散型随机变量的分布列
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知下列随机变量:
①10件产品中有2件次品,从中任选3件,取到次品的件数X;
②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;
③刘翔在一次110米跨栏比赛中的成绩X;
④在体育彩票的抽奖中,一次摇号产生的号码数X.
其中X是离散型随机变量的是( )
①10件产品中有2件次品,从中任选3件,取到次品的件数X;
②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;
③刘翔在一次110米跨栏比赛中的成绩X;
④在体育彩票的抽奖中,一次摇号产生的号码数X.
其中X是离散型随机变量的是( )
A.①②③ | B.②③④ |
C.①②④ | D.③④ |
下列随机变量是离散型随机变量的是( )
(1)抛5颗骰子得到的点数和;
(2)某人一天内接收到的电话次数;
(3)某地一年内下雨的天数;
(4)某机器生产零件的误差数.
(1)抛5颗骰子得到的点数和;
(2)某人一天内接收到的电话次数;
(3)某地一年内下雨的天数;
(4)某机器生产零件的误差数.
A.(1)(2)(3) | B.(4) |
C.(1)(4) | D.(2)(3) |
下列随机变量中不是离散型随机变量的是( ).
A.掷5次硬币正面向上的次数M |
B.某人每天早晨在某公共汽车站等某一路车的时间T |
C.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和Y |
D.将一个骰子掷3次,3次出现的点数之和X |
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球3次均未命中的概率为
,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为
,求
的分布列和数学期望.



(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为


袋中有大小相同的红球6个,白球5个,从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为( )
A.1,2,…,6 | B.1,2,…,7 | C.1,2,…,11 | D.1,2,3… |
某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为
和
,现安排甲组研发新产品
,乙组研发新产品
,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品
研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品
研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利
万元的分布列.




(1)求恰好有一种新产品研发成功的概率;
(2)若新产品



随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司
的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率
与月份代码
之间的关系,求
关于
的线性回归方程,并预测
公司2017年4月的市场占有率;
(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为
元/辆和1200元/辆的
、
两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是
公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:回归直线方程为
,其中
,
.


(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率





(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为



寿命 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是

参考公式:回归直线方程为



在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是_____.
下列随机变量不是离散型随机变量的是
A.某景点一天的游客数ξ |
B.某寻呼台一天内收到寻呼次数ξ |
C.水文站观测到江水的水位数ξ |
D.某收费站一天内通过的汽车车辆数ξ |