- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 基本事件
- + 古典概型的特征
- 整数值随机数
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一次考试中,五名学生的数学、物理成绩如下表所示:
(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据线性回归方程
.
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据线性回归方程


(1)某校夏令营有3名男同学A、B、C和3名女同学X、Y、Z,其年级情况如下表:
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
①用表中字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
(2)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是多少?
| 一年级 | 二年级 | 三年级 |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
①用表中字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
(2)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是多少?
对以下命题:
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是
;
③若一种彩票买一张中奖的概率是
,则买这种彩票一千张就会中奖;
④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是

③若一种彩票买一张中奖的概率是

④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
A.0 | B.1 | C.2 | D.3 |
某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润
(单位:元)关于当天生日蛋糕的需求量
(单位:个,
)的函数关系;
(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
(i)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;
(ii)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润



(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
日需求![]() | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
频数(天) | 10 | 20 | 20 | 14 | 13 | 13 | 10 |
(i)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;
(ii)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
若命题
:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题
:在边长为4的正方形
内任取一点
,则
的概率为
,则下列命题是真命题的是( )






A.![]() | B.![]() | C.![]() | D.![]() |