- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.若我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群运动员中服用过兴奋剂的百分率大约为_____.
某企业生产的乒乓球被指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:
(1)计算表中乒乓球为优等品的频率.
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
抽取球数n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
优等品数m | 45 | 92 | 194 | 470 | 954 | 1 902 |
优等品频率![]() | | | | | | |
(1)计算表中乒乓球为优等品的频率.
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[10,40)的频率为( )
分组 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
频数 | 2 | 3 | 4 | 5 | 4 | 2 |
A.0.35 | B.0.45 | C.0.55 | D.0.65 |
某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果:贫困地区:
发达地区:
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率(精确到千分位);
(2)分析贫富差距为什么会带来人的智力的差别.
参加测试的人数 | 30 | 50 | 100 | 200 | 500 | 800 |
得60分以上的人数 | 16 | 27 | 52 | 104 | 265 | 402 |
得60分以上的频率 | | | | | | |
发达地区:
参加测试的人数 | 30 | 50 | 100 | 200 | 500 | 800 |
得60分以上的人数 | 17 | 29 | 56 | 111 | 276 | 440 |
得60分以上的频率 | | | | | | |
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率(精确到千分位);
(2)分析贫富差距为什么会带来人的智力的差别.
某城市2016年的空气质量状况如下表所示:

其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2016年空气质量达到良或优的概率为( )

其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2016年空气质量达到良或优的概率为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
一个容量100的样本,其数据的分组与各组的频数如下表
则样本数据落在
上的频率为( )
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 12 | 13 | 24 | 15 | 16 | 13 | 7 |
则样本数据落在

A.0.13 | B.0.39 | C.0.52 | D.0.64 |
袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )
A.49 | B.51 |
C.0.49 | D.0.51 |
某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:
则落在桌面的数字不小于4的频率为_____.
落在桌面的数字 | 1 | 2 | 3 | 4 | 5 |
频 数 | 32 | 18 | 15 | 13 | 22 |
则落在桌面的数字不小于4的频率为_____.
李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:
经济学院一年级的学生王小慧下学期将选修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).
(1)90分以上;
(2)60~69分;
(3)60分以上.
成绩 | 人数 |
90分以上 | 43 |
80~89分 | 182 |
70~79分 | 260 |
60~69分 | 90 |
50~59分 | 62 |
50分以下 | 8 |
经济学院一年级的学生王小慧下学期将选修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).
(1)90分以上;
(2)60~69分;
(3)60分以上.