- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从长度分别为
的四条线段中,任取三条的不同取法共有
种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为
,则
等于____________.




从一堆苹果中任取10只,称得它们的质量如下(单位:克)
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
A.0.2 | B.0.3 | C.0.4 | D.0.5 |
为了解市民对A,B两个品牌共享单车使用情况的满意程度,分别从使用A,B两个品牌单车的市民中随机抽取了100人,对这两个品牌的单车进行评分,满分60分.根据调查,得到A品牌单车评分的频率分布直方图,和B品牌单车评分的频数分布表:

根据用户的评分,定义用户对共享单车评价的“满意度指数”如下:
(1)求对A品牌单车评价“满意度指数”为
的人数;
(2)从对A,B两个品牌单车评分都在
范围内的人中随机选出2人,求2人中恰有1人是A品牌单车的评分人的概率;


根据用户的评分,定义用户对共享单车评价的“满意度指数”如下:
评分 | ![]() | ![]() | ![]() |
满意度指数 | ![]() | ![]() | ![]() |
(1)求对A品牌单车评价“满意度指数”为

(2)从对A,B两个品牌单车评分都在

容量为
的样本数据,按从小到大的顺序分为
组,如下表:
第三组的频数和频率分别是 ()


组号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
频数 | 10 | 13 | x | 14 | 15 | 13 | 12 | 9 |
第三组的频数和频率分别是 ()
A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.
测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲机床 | 8 | 12 | 40 | 32 | 8 |
乙机床 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.
某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为
配方和
配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表:
配方的频数分布表:
(1)分别估计用
配方、
配方生产的产品的优质品率;
(2)已知用
配方生产的一件产品的利润(单位:元)与其质量指标值
的关系为
,估计用
配方生产的一件产品的利润大于
的概率,并求用
配方生产的上述
件产品的平均利润.



指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |

指标值分组 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用


(2)已知用







为缓解堵车现象,解决堵车问题,银川市交警队调查了甲、乙两个路口的车流量,在2019年6月随机选取了14天,统计每天上午7:30-9:00早高峰时段各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.

(1)甲、乙两个路口的车流量的中位数分别是多少?
(2)试计算甲、乙两个路口的车流量在
之间的频率.

(1)甲、乙两个路口的车流量的中位数分别是多少?
(2)试计算甲、乙两个路口的车流量在

在新中国成立七十周年之际,赤峰市某中学的数学课题研究小组,在某一个社区设计了一个调查:在每天晚上7:30~10:00共2.5小时内,居民浏览“学习强国”的时间.如果这个社区共有成人按10000人计算,每人每天晚上7:30~10:00期间打开“学习强国APP”的概率均为
(某人在某一时刻打开“学习强国”的概率
,
),并且是否打开进行学习是彼此相互独立的.他们统计了其中100名成人每天晚上浏览“学习强国”的时间(单位:min),得到下面的频数表,以样本中100名成人的平均学习时间作为该社区每个人的学习时间.
(1)试估计
的值;
(2)设
表示这个社区每天晚上打开“学习强国”进行学习的人数.
①求
的数学期望
和方差
;
②若随机变量
满足
,可认为
.假设当
时,表示社区处于最佳的学习氛围,试由此估计,该社区每天晚上处于最佳学习氛围的时间长度(结果保留为整数).
附:若
,则
,
,
.




学习时长/min | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 20 | 40 | 20 | 10 |
(1)试估计

(2)设

①求



②若随机变量




附:若



