- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.
.魔术师从一个装有标号为1,2,3的小球的盒子中,无放回地变走两个小球,每次变走一个,先变走的小球的标号为m,后变走的小球的标号为n,这样构成有序数对(m,n).写出这个魔术的所有结果.
一批工具共100个,其中有95个合格品,5个次品,每次任取1个,用后放回.若第1次取到合格品的概率是m,第2次取到合格品的概率是n,则 ( )
A.m>n | B.m=n |
C.m<n | D.不能确定 |
某企业生产的乒乓球被指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:
(1)计算表中乒乓球为优等品的频率.
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
抽取球数n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
优等品数m | 45 | 92 | 194 | 470 | 954 | 1 902 |
优等品频率![]() | | | | | | |
(1)计算表中乒乓球为优等品的频率.
(2)从这批乒乓球产品中任取一个,检测出为优等品的概率是多少?(结果保留到小数点后三位)
下列说法:
①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;
②做n次随机试验,事件A发生m次,则事件A发生的频率
就是事件A的概率;
③百分率是频率,但不是概率;
④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是____ (填序号).
①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;
②做n次随机试验,事件A发生m次,则事件A发生的频率

③百分率是频率,但不是概率;
④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是
10件产品中有8件正品,2件次品,从中随机地取出3件,则下列事件中是必然事件的为 ( )
A.3件都是正品 | B.至少有一件次品 |
C.3件都是次品 | D.至少有一件正品 |
下列说法正确的是 ( )
A.概率是随机的,在试验前不能确定 |
B.由生物学知道生男生女的概率均为![]() |
C.频率是客观存在的与试验次数无关 |
D.随着试验次数的增加,频率一般会越来越接近概率 |
指出下列事件是必然事件、不可能事件,还是随机事件?
(1)如果a,b都是实数,那么a+b=b+a.
(2)从分别标有号数1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签.
(3)没有水分,种子发芽.
(4)某电话总机在60秒内接到至少15次呼叫.
(5)在标准大气压下,水的温度达到50℃时沸腾.
(1)如果a,b都是实数,那么a+b=b+a.
(2)从分别标有号数1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签.
(3)没有水分,种子发芽.
(4)某电话总机在60秒内接到至少15次呼叫.
(5)在标准大气压下,水的温度达到50℃时沸腾.
抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则( )
A.A![]() |
B.A=B |
C.![]() |
D.![]() |