某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第





收费比率





 
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数





人数





 
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
3个红球与3个黑球随机排成一行,从左到右依次在球上标记1,2,3,4,5,6,则红球上的数字之和小于黑球上的数字之和的概率为(   )
A.B.
C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为秒.若一名行人来到该路口遇到红灯,则至少需要等待秒才出现绿灯的概率为______.
当前题号:3 | 题型:填空题 | 难度:0.99
如图所示,三国时代数学家赵爽在《周髀算经》利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30°,若向弦图内随机抛掷500颗米粒(立水即略不计,取),则落在小正方形(阴影)内的米粒数大约为(   )
A.62B.67C.72D.82
当前题号:4 | 题型:单选题 | 难度:0.99
某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一位挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于分就算闯关成功.
)求至少回答对一个问题的概率.
)求这位挑战者回答这三个问题的总得分的分布列.
)求这位挑战者闯关成功的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是 ,且每题正确完成与否互不影响.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.
当前题号:6 | 题型:解答题 | 难度:0.99
袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()
A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多
当前题号:7 | 题型:单选题 | 难度:0.99
口袋内装有红色、绿色和蓝色卡片各2张,一次取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是以下事件“①2张卡片都不是红色;②2张卡片恰有一张红色;③2张卡片至少有一张红色;④2张卡片恰有两张绿色”中的哪几个?(  )
A.①②④B.①③④C.②③④D.①②③④
当前题号:8 | 题型:单选题 | 难度:0.99
从4名男生和2名女生中随机选出2人参加演讲比赛.
(1)求所选2人恰有1名男生的概率;
(2)求所选2人中至少有1名女生的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
把一个体积为,表面涂有红色的正方体木块锯成64个体积为的小正方体,从这64个小正方体中随机的抽取出一块,则这1块至少有1面涂有红色的概率是(   )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99