- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- + 概率
- 随机事件的概率
- 古典概型
- 几何概型
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:

(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.

(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.
在一个盒子中有3个球,蓝球、红球、绿球各1个,从中随机地取出一个球,观察其颜色后放回,然后再随机取出1个球.
(1)用适当的符号表示试验的可能结果,写出试验的样本空间;
(2)用集合表示“第一次取出的是红球"的事件;
(3)用集合表示“两次取出的球颜色相同”的事件.
(1)用适当的符号表示试验的可能结果,写出试验的样本空间;
(2)用集合表示“第一次取出的是红球"的事件;
(3)用集合表示“两次取出的球颜色相同”的事件.
在一个古典概型中,若两个不同的随机事件A、B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”关于“等概率事件”,以下判断正确的是( )
A.在同一个古典概型中,所有的基本事件之间都是“等概率事件” |
B.若一个古典概型的事件总数大于2,则在这个古典概型中除基本事件外没有其他“等概率事件” |
C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件” |
D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件” |
在某届世界杯足球赛上,a,b,c,d四支球队进入了最后的比赛,在第一轮的两场比赛中,a对b,c对d,然后这两场比赛的胜者将进入冠亚军决赛,这两场比赛的负者比赛,决出第三名和第四名.比赛的一种最终可能结果记为acbd(表示a胜b,c胜d,然后a胜c,b胜d).
(1)写出比赛所有可能结果构成的样本空间;
(2)设事件A表示a队获得冠军,写出A包含的所有可能结果;
(3)设事件B表示a队进入冠亚军决赛,写出B包含的所有可能结果.
(1)写出比赛所有可能结果构成的样本空间;
(2)设事件A表示a队获得冠军,写出A包含的所有可能结果;
(3)设事件B表示a队进入冠亚军决赛,写出B包含的所有可能结果.
先后掷一个质地均匀的骰子两次,落在水平桌面后,记朝上的面的点数分别为x,y,事件“x,y都为偶数,且
”包含的基本事件数为_______.

某网站针对“2016年春节放假安排”开展网上问卷调查,提出了A,B两种放假方案,调查结果如表:(单位:万人)
已知从所有参与调查的人中任选1人是“老年人”的概率为
.
(1)求n的值;
(2)从参与调查的“老年人”中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1人“支持B方案”的概率.
人群 | 青少年 | 中年人 | 老年人 |
支持A方案 | 200 | 400 | 800 |
支持B方案 | 100 | 100 | n |
已知从所有参与调查的人中任选1人是“老年人”的概率为

(1)求n的值;
(2)从参与调查的“老年人”中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1人“支持B方案”的概率.
在解决实际问题时,正确理解试验是准确列举出样本点的关键,解题时要认真区分相关试验的含义,弄清“任取两个”“不放回取两次”和“有放回取两次”等的区别例如,从含有两件正品
,
和一件次品b的三件产品中,每次任取一件,连续取两次.
(1)若每次取后不放回,如何列举出样本空间?
(2)若每次取后放回,如何列举出样本空间?


(1)若每次取后不放回,如何列举出样本空间?
(2)若每次取后放回,如何列举出样本空间?