- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 组合与组合数公式
- 组合意义理解
- 排列(数)与组合(数)的区别
- 组合数的计算
- 利用组合数公式证明
- 组合数方程和不等式
- 组合数的性质及应用
- 组合应用题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在杨辉三角形中,从第3行开始,除1以外,其它没一个数值是它肩上的两个数之和,这三角形数阵开头几行如图所示.
(1)证明:
;
(2)求证:第m斜列中(从右上到左下)的前K个数之和一定等于第m+1斜列中的第K个数,即
(3)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3:8:14?若存在,试求出这三个数;若不存在,请说明理由.
(1)证明:

(2)求证:第m斜列中(从右上到左下)的前K个数之和一定等于第m+1斜列中的第K个数,即

(3)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3:8:14?若存在,试求出这三个数;若不存在,请说明理由.

某兴趣小组有5名学生,其中有3名男生和2名女生,现在要从这5名学生中任选2名学生参加活动,则选中的2名学生的性别相同的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动.
(1)若规定选出的至少有一名女老师,则共有18种不同的安排方案,试求该支教队男、女老师的人数;
(2)在(1)的条件下,记
为选出的2位老师中女老师的人数,写出
的分布列.
(1)若规定选出的至少有一名女老师,则共有18种不同的安排方案,试求该支教队男、女老师的人数;
(2)在(1)的条件下,记

