- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- + 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用1,2,3,4,5,6这六个数字组成无重复数字的六位数,则5和6在两端,1和2相邻的六位数的个数是
A.24 | B.32 | C.36 | D.48 |
将A,B,C,D,E,F这6个宇母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
为迎接双流中学建校
周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行
个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有()


A.![]() | B.![]() | C.![]() | D.![]() |
男生4人和女生3人排成一排拍照留念.
(1)有多少种不同的排法(结果用数值表示)?
(2)要求两端都不排女生,有多少种不同的排法(结果用数值表示)?
(3)求甲乙两人相邻的概率.(结果用最简分数表示)
(1)有多少种不同的排法(结果用数值表示)?
(2)要求两端都不排女生,有多少种不同的排法(结果用数值表示)?
(3)求甲乙两人相邻的概率.(结果用最简分数表示)
有9本不相同的教科书排成一排放在书架上,其中数学书4本,外语书3本,物理书2本,如果同一学科的书要排在一起,那么有________种不同的排法(填写数值).
将1,2,3,4,5,6,7,8八个数字组成没有重复数字的八位数,要求7与8相邻,且任意相邻两个数字奇偶不同,这样的八位数的个数是________。