- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分类加法计数原理
- + 两个计数原理的综合应用
- 实际问题中的计数问题
- 代数中的计数问题
- 几何计数问题
- 数字排列问题
- 涂色问题
- 其他计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,用5种不同的颜色把图中
、
、
、
四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )






A.200种 | B.160种 | C.240种 | D.180种 |
现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( )


A.144种 | B.72种 | C.64种 | D.84种 |
某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有( )
A.6 | B.8 | C.12 | D.24 |
将1,2,3,4,5,6,7,8八个数字组成没有重复数字的八位数,要求7与8相邻,且任意相邻两个数字奇偶不同,这样的八位数的个数是________。
从3名男生和2名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则不同的选派方案有( )
A.9种 | B.12种 | C.54种 | D.72种 |
如图,一个正方形花圃被分成5份.

(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,己知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?
(2)若向这5个部分放入7个不同的盆栽,要求每个部分都有盆栽,问有多少种不同的放法?

(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,己知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?
(2)若向这5个部分放入7个不同的盆栽,要求每个部分都有盆栽,问有多少种不同的放法?