- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 分类加法计数原理
- 两个计数原理的综合应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点

A.4016 | B.4017 | C.4018 | D.4019 |
将正方体
的各面涂色,任何相邻两个面不同色,现在有5种不同的颜色,并且涂好了过顶点
的3个面的颜色,那么其余的3个面的涂色的方案共有 __种.


在某次中外海上联合搜救演习中,参加演习的中方有4艘船、3架飞机;外方有5艘船、2架飞机,若从中、外两组中各选出2个单位(1架飞机或1艘船都作为一个单位,所有的船只飞机两两不同),且选出的四个单位中恰有一架飞机的不同选法共有_______种.
六张卡片上分别写有数字0,1,2,4,6,9,其中写有6,9的卡片可以通用(6倒过来可以看作9),从中任选3张卡片拼在一起组成三位数,其中各位上数字和是3的倍数的三位数有 个
设
,
,…,
是1,2,…,
的一个排列,把排在
的左边且比
小的数的个数称为
的顺序数(
).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为________________.(结果用数字表示)








将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为
A.96 | B.114 | C.128 | D.136 |
有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是_____
高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ).
A.16种 | B.18种 | C.37种 | D.48种 |