- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为
,
,
. 例如,图中上档的数字和
. 若
,
,
成等差数列,则不同的分珠计数法有____ 种.








某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得一30分;选乙题答对得10分,答错得一10分.若4位同学的总分为0,求这4位同学有多少种不同的得分情况?
有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则2人在不同层离开的概率是 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求
.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求

用5种不同的颜色给图中4个区域涂色,如果每个区域涂一种颜色,相邻区域不能同色,那么涂色的方法有( )种.


A.120 | B.180 | C.240 | D.72 |
某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )
A.48 | B.72 | C.84 | D.168 |
用1,2,3,4,5组成一个无重复数字的五位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为( )
A.18 | B.36 | C.72 | D.432 |
如图所示,将
方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )



A.33 | B.56 | C.64 | D.78 |