- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:137可表示为“
”,26可表示为“
”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9个数字表示三位数的个数为( )




A.10 | B.20 | C.36 | D.38 |
大学生小王和小张即将参加实习,他们各从“崇尚科学,关心社会”的荆州市荆州中学、“安学、亲师、乐友、信道”的荆门市龙泉中学、“崇尚科学,追求真理”的荆门市钟祥一中、“追求卓越,崇尚一流”的襄阳市第四中学、“文明、振奋、务实、创新”的襄阳市第五中学、“千年文脉,百年一中”的宜昌市第一中学、“人走三峡,书读夷陵”的宜昌市夷陵中学这七所省重点中学中随机选择一所参加实习,两人可选同一所或者两所不同的学校,假设他们选择哪所学校是等可能的,则他们在同一个市参加实习的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( )
A.84种 | B.100种 | C.120种 | D.150种 |
某城市关系要好的
四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4人(乘同一辆车的4名小孩不考虑位置差异).
(1)共有多少种不同的乘坐方式?
(2)若
户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有多少种?

(1)共有多少种不同的乘坐方式?
(2)若

一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为
、
、
,且每题答对与否相互独立.
(1)当
时,求考生填空题得满分的概率;
(2)若考生填空题得10分与得15分的概率相等,求
的值.



(1)当

(2)若考生填空题得10分与得15分的概率相等,求

甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是
A.210 | B.84 | C.343 | D.336 |