- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校高三年级有2个文科班,3个理科班,现每个班指定1人对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )
A.24 | B.32 | C.48 | D.84 |
设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.求:
(1)P可以表示多少个平面上的不同的点?
(2)P可以表示多少个第二象限的点?
(3)P可以表示多少个不在直线y=x上的点?
(1)P可以表示多少个平面上的不同的点?
(2)P可以表示多少个第二象限的点?
(3)P可以表示多少个不在直线y=x上的点?
将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中.
(1)有多少种放法?
(2)若每盒至多一球,则有多少种放法?
(3)若恰好有一个空盒,则有多少种放法?
(4)若每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,则有多少种放法?
(1)有多少种放法?
(2)若每盒至多一球,则有多少种放法?
(3)若恰好有一个空盒,则有多少种放法?
(4)若每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,则有多少种放法?
给一些书编号,准备用3个字符,其中首字符用A,B,后2个字符用a,b,c(允许重复),则不同编号的书共有 ( )
A.8本 | B.9本 | C.12本 | D.18本 |
从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )
A.24 | B.48 |
C.72 | D.120 |
已知一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球的个数不比白球的个数少的取法有多少种?
(2)从中任取5个球,记取到红球的个数为X,求X的分布列和数学期望.
(1)从中任取4个球,红球的个数不比白球的个数少的取法有多少种?
(2)从中任取5个球,记取到红球的个数为X,求X的分布列和数学期望.
5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为 ( )
A.5760 | B.57600 | C.2880 | D.28800 |