- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数学与自然、生活相伴相随,无论是蜂的繁殖规律,树的分枝,还是钢琴音阶的排列,当中都蕴含了一个美丽的数学模型Fibonacci(斐波那契数列):1,1,2,3,5,8,13,21…,这个数列前两项都是1,从第三项起,每一项都等于前面两项之和,请你结合斐波那契数列,尝试解答下面的问题:小明走楼梯,该楼梯一共8级台阶,小明每步可以上一级或二级,请问小明的不同走法种数是( )
A.20 | B.34 | C.42 | D.55 |
有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有两个盒不放球,有多少种放法?
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有两个盒不放球,有多少种放法?
学校突然停电了,寝室里面漆黑一片,有3个同学的校服(同一型号)都混乱地丢在了一个人的床上,则他们中至少有一人摸到自己的校服的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为( )
A.18个 | B.10个 | C.16个 | D.14个 |
大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的
四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中
户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有


A.![]() | B.![]() | C.![]() | D.![]() |
将18个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为( )
A.96 | B.114 | C.128 | D.136 |
在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为
A.14 | B.16 | C.18 | D.20 |