2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?
 
有兴趣
没有兴趣
合计

20
 
 

 
15
 
合计
 
 
100
 
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中

0.150
0.100
0.050
0.025
0.010

2.072
2.076
3.841
5.024
6.635
 
当前题号:1 | 题型:解答题 | 难度:0.99
2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
 
对服务好评
对服务不满意
合计
对商品好评
140
 
 
对商品不满意
 
10
 
合计
 
 
200
 
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分以下的学生后,共有男生名,女生名.现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组,得到如下所示频数分布表.
分数段




















 
(Ⅰ)规定分以上为优分(含分),请你根据已知条件作出列联表.
 
优分
非优分
合计
男生
 
 
 
女生
 
 
 
合计
 
 

 
(Ⅱ)根据你作出的列联表判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式:










 
,其中.
当前题号:3 | 题型:解答题 | 难度:0.99
2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
 
选择“物理”
选择“历史”
总计
男生

10
 
女生
25

 
总计
 
 
 
 
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.
参考公式:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:4 | 题型:解答题 | 难度:0.99
某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
 
支持
不支持
合计
年龄不大于50岁
 
 
80
年龄大于50岁
10
 
 
合计
 
70
100
 
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位女教师的概率.
附:

0.100
0.050
0.025
0.010

2.706
3.841
5.024
6.635
 
当前题号:5 | 题型:解答题 | 难度:0.99
到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
 
选择“物理”
选择“地理”
总计
男生
 
10
 
女生
25
 
 
总计
 
 
 
 
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.

0.05
0.01

3.841
6.635
 
当前题号:6 | 题型:解答题 | 难度:0.99
网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调杳结果表明:在喜欢网购的25人中有19人是低收入的人,另外6人是高收入的人,在不喜欢网购的25人中有8人是低收入的人,另外17人是高收入的人.
(1)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;
 
喜欢网购
不喜欢网购
总计
低收入的人
 
 
 
高收入的人
 
 
 
总计
 
 
 
 
(2)将5名喜欢网购的消费者编号为1、2、3、4、5,将5名不喜欢网购的消费者编号也记作1、2、3、4、5,从这两组人中各任选一人讲行交流,求被选出的2人的编号之和为2的倍数的概率.
参考公式:
参考数据:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
 


总计
男生身高
 
 
 
女生身高
 
 
 
总计
 
 
 
 
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:

0.025
0.010
0.005
0.001

5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于项的称为“比较了解”少于三项的称为“不太了解”调查结果如下:
 






项以上
男生(人)







女生(人)







 
(1)完成如下列联表并判断是否有的把握认为了解垃圾分类与性别有关?
 
比较了解
不太了解
合计
男生
________
________
________
女生
________
________
________
合计
________
________
________
 
(2)抽取的名高中生中按照男、女生采用分层抽样的方法抽取人的样本.
(i)求抽取的女生和男生的人数;
(ii)从人的样本中随机抽取两人,求两人都是女生的概率.
参考数据:










 
.
当前题号:9 | 题型:解答题 | 难度:0.99